Suppr超能文献

铁蛋白中铁核的量子磁性——巨自旋模型的重新评估

Quantum Magnetism of the Iron Core in Ferritin Proteins-A Re-Evaluation of the Giant-Spin Model.

作者信息

Hagen Wilfred R

机构信息

Department of Biotechnology, Delft University of Technology, Building 58, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.

出版信息

Molecules. 2024 May 11;29(10):2254. doi: 10.3390/molecules29102254.

Abstract

The electron-electron, or zero-field interaction (ZFI) in the electron paramagnetic resonance (EPR) of high-spin transition ions in metalloproteins and coordination complexes, is commonly described by a simple spin Hamiltonian that is second-order in the spin : H=D[Sz2-SS+1/3+E(Sx2-Sy2). Symmetry considerations, however, allow for fourth-order terms when ≥ 2. In metalloprotein EPR studies, these terms have rarely been explored. Metal ions can cluster via non-metal bridges, as, for example, in iron-sulfur clusters, in which exchange interaction can result in higher system spin, and this would allow for sixth- and higher-order ZFI terms. For metalloproteins, these have thus far been completely ignored. Single-molecule magnets (SMMs) are multi-metal ion high spin complexes, in which the ZFI usually has a negative sign, thus affording a ground state level pair with maximal spin quantum number = ±, giving rise to unusual magnetic properties at low temperatures. The description of EPR from SMMs is commonly cast in terms of the 'giant-spin model', which assumes a magnetically isolated system spin, and in which fourth-order, and recently, even sixth-order ZFI terms have been found to be required. A special version of the giant-spin model, adopted for scaling-up to system spins of order ≈ 10-10, has been applied to the ubiquitous iron-storage protein ferritin, which has an internal core containing Fe ions whose individual high spins couple in a way to create a superparamagnet at ambient temperature with very high system spin reminiscent to that of ferromagnetic nanoparticles. This scaled giant-spin model is critically evaluated; limitations and future possibilities are explicitly formulated.

摘要

金属蛋白和配位络合物中高自旋过渡离子的电子顺磁共振(EPR)中的电子-电子相互作用或零场相互作用(ZFI),通常由一个简单的自旋哈密顿量来描述,该哈密顿量在自旋上是二阶的:H = D[Sz² - S(S + 1)/3] + E(Sx² - Sy²)。然而,当对称性考虑≥2时,允许存在四阶项。在金属蛋白EPR研究中,这些项很少被探讨。金属离子可以通过非金属桥簇集,例如在铁硫簇中,其中交换相互作用可导致更高的体系自旋,这将允许存在六阶及更高阶的ZFI项。对于金属蛋白,这些项迄今为止完全被忽略了。单分子磁体(SMM)是多金属离子高自旋络合物,其中ZFI通常具有负号,从而产生具有最大自旋量子数S = ±S的基态能级对,在低温下产生不寻常的磁性。SMM的EPR描述通常根据“巨自旋模型”进行,该模型假设一个磁隔离的体系自旋,并且已经发现需要四阶甚至最近的六阶ZFI项。巨自旋模型的一个特殊版本,用于放大到约为10 - 10的体系自旋,已应用于普遍存在的铁储存蛋白铁蛋白,其内部核心含有Fe离子,其单个高自旋以某种方式耦合,在室温下形成具有非常高体系自旋的超顺磁体,类似于铁磁纳米颗粒。对这个缩放后的巨自旋模型进行了严格评估;明确阐述了其局限性和未来可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验