Suppr超能文献

基于后肢单张后视图像的集成深度卷积神经网络检测内侧髌骨脱位。

Detecting medial patellar luxation with ensemble deep convolutional neural network based on a single rear view image of the hindlimb.

机构信息

Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Korea.

Elevenliter Inc., Samuiwon Startup Center, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul, Korea.

出版信息

Sci Rep. 2023 Oct 10;13(1):17113. doi: 10.1038/s41598-023-43872-7.

Abstract

Medial patellar luxation (MPL) is a common orthopedic disease in dogs, which predisposes elderly and small-breed dogs. Unlike in humans, diagnosis in the early course of the disease is challenging because symptoms and joint-pain expression in canines are vague. Herein, we introduced a deep-learning system to diagnose MPL using a single rear-view hindlimb image. We believe that this is the first attempt to build a deep-learning system to diagnose MPL based on image analysis. Notably, 7689 images were collected from 2653 dogs in 30 private animal clinics between July 2021 and July 2022. Model performance was compared with ResNet50, VGG16, VGG19, Inception-V3, and veterinarian performance. For performance comparison, a professional veterinarian with > 10 years of experience selected images of 25 normal dogs and 25 dogs with MPL. The proposed model showed the highest performance, with 92.5% accuracy, whereas human experts showed an average accuracy of 55.2%. Therefore, our model can diagnose MPL using only a single rear-view hindlimb image. Furthermore, to solve the image uncertainty caused by the input image noise, we used a one-class SVM and ensemble learning methods to ensure model robustness. Our study will help diagnose MPL in clinical settings using a single rear-view hindlimb image.

摘要

内侧髌骨脱位(MPL)是犬的一种常见骨科疾病,易发生于老年犬和小型犬种。与人类不同,在疾病早期诊断具有挑战性,因为犬只的症状和关节疼痛表现较为模糊。在此,我们引入了一种深度学习系统,使用单张后肢侧位图像来诊断 MPL。我们相信,这是首次尝试基于图像分析构建用于诊断 MPL 的深度学习系统。值得注意的是,2021 年 7 月至 2022 年 7 月期间,我们从 30 家私人动物诊所的 2653 只犬中收集了 7689 张图像。我们比较了模型性能与 ResNet50、VGG16、VGG19、Inception-V3 和兽医的表现。为了进行性能比较,一位具有 10 年以上经验的专业兽医选择了 25 只正常犬和 25 只患有 MPL 的犬的图像。所提出的模型表现最佳,准确率为 92.5%,而人类专家的平均准确率为 55.2%。因此,我们的模型仅使用单张后肢侧位图像即可诊断 MPL。此外,为了解决输入图像噪声引起的图像不确定性问题,我们使用了一类支持向量机和集成学习方法来确保模型的稳健性。我们的研究将有助于在临床环境中使用单张后肢侧位图像诊断 MPL。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbaa/10564780/1851aa4d717c/41598_2023_43872_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验