Suppr超能文献

仅使用探诊出血(BOP)与 BOP 结合使用视觉迹象对比使用大型电子牙科记录进行的牙龈炎诊断。

Comparing gingivitis diagnoses by bleeding on probing (BOP) exclusively versus BOP combined with visual signs using large electronic dental records.

机构信息

Division of Dental Informatics, Department of Dental Public Health and Dental Informatics, Indiana University School of Dentistry (IUSD), Indianapolis, IN, USA.

Department of Health Services Administration and Policy, College of Public Health, Temple University, Philadelphia, PA, USA.

出版信息

Sci Rep. 2023 Oct 10;13(1):17065. doi: 10.1038/s41598-023-44307-z.

Abstract

The major significance of the 2018 gingivitis classification criteria is utilizing a simple, objective, and reliable clinical sign, bleeding on probing score (BOP%), to diagnose gingivitis. However, studies report variations in gingivitis diagnoses with the potential to under- or over-estimating disease occurrence. This study determined the agreement between gingivitis diagnoses generated using the 2018 criteria (BOP%) versus diagnoses using BOP% and other gingival visual assessments. We conducted a retrospective study of 28,908 patients' electronic dental records (EDR) from January-2009 to December-2014, at the Indiana University School of Dentistry. Computational and natural language processing (NLP) approaches were developed to diagnose gingivitis cases from BOP% and retrieve diagnoses from clinical notes. Subsequently, we determined the agreement between BOP%-generated diagnoses and clinician-recorded diagnoses. A thirty-four percent agreement was present between BOP%-generated diagnoses and clinician-recorded diagnoses for disease status (no gingivitis/gingivitis) and a 9% agreement for the disease extent (localized/generalized gingivitis). The computational program and NLP performed excellently with 99.5% and 98% f-1 measures, respectively. Sixty-six percent of patients diagnosed with gingivitis were reclassified as having healthy gingiva based on the 2018 diagnostic classification. The results indicate potential challenges with clinicians adopting the new diagnostic criterion as they transition to using the BOP% alone and not considering the visual signs of inflammation. Periodic training and calibration could facilitate clinicians' and researchers' adoption of the 2018 diagnostic system. The informatics approaches developed could be utilized to automate diagnostic findings from EDR charting and clinical notes.

摘要

2018 年牙龈炎分类标准的主要意义在于利用简单、客观和可靠的临床指标——探诊出血评分(BOP%)来诊断牙龈炎。然而,研究报告称,不同的牙龈炎诊断方法存在潜在的低估或高估疾病发生的可能性。本研究旨在确定使用 2018 年标准(BOP%)与使用 BOP%和其他牙龈视觉评估方法生成的牙龈炎诊断之间的一致性。我们对印第安纳大学牙科学院 2009 年 1 月至 2014 年 12 月期间的 28908 名患者的电子牙科记录(EDR)进行了回顾性研究。我们开发了计算和自然语言处理(NLP)方法,以便从 BOP%诊断牙龈炎病例,并从临床记录中检索诊断。随后,我们确定了 BOP%生成的诊断与临床医生记录的诊断之间的一致性。BOP%生成的诊断与临床医生记录的诊断在疾病状态(无牙龈炎/牙龈炎)方面存在 34%的一致性,在疾病程度(局部性/广泛性牙龈炎)方面存在 9%的一致性。计算程序和 NLP 的表现非常出色,分别具有 99.5%和 98%的 f-1 度量。根据 2018 年的诊断分类,66%被诊断为牙龈炎的患者被重新归类为健康的牙龈。结果表明,临床医生在过渡到仅使用 BOP%且不考虑炎症的视觉迹象时,采用新的诊断标准可能会面临挑战。定期培训和校准可以促进临床医生和研究人员采用 2018 年的诊断系统。开发的信息学方法可以用于从 EDR 图表和临床记录中自动诊断发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3deb/10564949/e066bab5461a/41598_2023_44307_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验