Suppr超能文献

基于图神经网络的癌症特异性驱动错义突变的网络预测方法。

Network-based prediction approach for cancer-specific driver missense mutations using a graph neural network.

作者信息

Hatano Narumi, Kamada Mayumi, Kojima Ryosuke, Okuno Yasushi

机构信息

Graduate School of Medicine, Kyoto University, Kyoto, Japan.

HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science(R-CCS), Kobe, Japan.

出版信息

BMC Bioinformatics. 2023 Oct 10;24(1):383. doi: 10.1186/s12859-023-05507-6.

Abstract

BACKGROUND

In cancer genomic medicine, finding driver mutations involved in cancer development and tumor growth is crucial. Machine-learning methods to predict driver missense mutations have been developed because variants are frequently detected by genomic sequencing. However, even though the abnormalities in molecular networks are associated with cancer, many of these methods focus on individual variants and do not consider molecular networks. Here we propose a new network-based method, Net-DMPred, to predict driver missense mutations considering molecular networks. Net-DMPred consists of the graph part and the prediction part. In the graph part, molecular networks are learned by a graph neural network (GNN). The prediction part learns whether variants are driver variants using features of individual variants combined with the graph features learned in the graph part.

RESULTS

Net-DMPred, which considers molecular networks, performed better than conventional methods. Furthermore, the prediction performance differed by the molecular network structure used in learning, suggesting that it is important to consider not only the local network related to cancer but also the large-scale network in living organisms.

CONCLUSIONS

We propose a network-based machine learning method, Net-DMPred, for predicting cancer driver missense mutations. Our method enables us to consider the entire graph architecture representing the molecular network because it uses GNN. Net-DMPred is expected to detect driver mutations from a lot of missense mutations that are not known to be associated with cancer.

摘要

背景

在癌症基因组医学中,寻找参与癌症发展和肿瘤生长的驱动突变至关重要。由于基因组测序经常检测到变异,因此已经开发了机器学习方法来预测驱动错义突变。然而,尽管分子网络异常与癌症相关,但这些方法中的许多都侧重于单个变异,而没有考虑分子网络。在此,我们提出一种新的基于网络的方法Net-DMPred,用于在考虑分子网络的情况下预测驱动错义突变。Net-DMPred由图部分和预测部分组成。在图部分,分子网络由图神经网络(GNN)学习。预测部分使用单个变异的特征结合在图部分学习到的图特征来学习变异是否为驱动变异。

结果

考虑分子网络的Net-DMPred比传统方法表现更好。此外,预测性能因学习中使用的分子网络结构而异,这表明不仅要考虑与癌症相关的局部网络,还要考虑生物体中的大规模网络。

结论

我们提出一种基于网络的机器学习方法Net-DMPred,用于预测癌症驱动错义突变。我们的方法能够考虑代表分子网络的整个图架构,因为它使用了GNN。Net-DMPred有望从许多未知与癌症相关的错义突变中检测出驱动突变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ae8/10565986/2e8ff350c68f/12859_2023_5507_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验