Suppr超能文献

中枢神经系统试验中的创新技术:招募、留存和代表性方面的前景与陷阱

Innovative Technologies in CNS Trials: Promises and Pitfalls for Recruitment, Retention, and Representativeness.

作者信息

Lutz Jacqueline, Pratap Abhishek, Lenze Eric J, Bestha Durga, Lipschitz Jessica M, Karantzoulis Stella, Vaidyanathan Uma, Robin Jessica, Horan William, Brannan Stephen, Mittoux Aurelia, Davis Michael C, Lakhan Shaheen E, Keefe Richard

机构信息

Dr. Lutz was with Medical Office, Click Therapeutics, Inc. in New York, New York, at the time of writing; she is now with Biogen Digital Health in Cambridge, Massachusetts, and Boston University School of Medicine in Boston, Massachusetts.

Dr. Pratap was with Center for Addiction & Mental Health in Toronto, Canada, at the time of writing; he is now with Boehringer Ingelheim in Ridgefield, Connecticut; King's College London in London, United Kingdom; and Department of Biomedical Informatics and Medical Education, University of Washington in Seattle, Washington.

出版信息

Innov Clin Neurosci. 2023 Sep 1;20(7-9):40-46. eCollection 2023 Jul-Sep.

Abstract

OBJECTIVE

Recruitment of a sufficiently large and representative patient sample and its retention during central nervous system (CNS) trials presents major challenges for study sponsors. Technological advances are reshaping clinical trial operations to meet these challenges, and the COVID-19 pandemic further accelerated this development.

METHOD OF RESEARCH

The International Society for CNS Clinical Trials and Methodology (ISCTM; www.isctm.org) Innovative Technologies for CNS Trials Working Group surveyed the state of technological innovations for improved recruitment and retention and assessed their promises and pitfalls.

RESULTS

Online advertisement and electronic patient registries can enhance recruitment, but challenges with sample representativeness, conversion rates from eligible prescreening to enrolled patients, data privacy and security, and patient identification remain hurdles for optimal use of these technologies. Electronic medical records (EMR) mining with artificial intelligence (AI)/machine learning (ML) methods is promising but awaits translation into trials. During the study treatment phase, technological innovations increasingly support participant retention, including adherence with the investigational treatment. Digital tools for adherence and retention support take many forms, including patient-centric communication channels between researchers and participants, real-time study reminders, and digital behavioral interventions to increase study compliance. However, such tools add technical complexities to trials, and their impact on the generalizability of results are largely unknown.

CONCLUSION

Overall, the group found a scarcity of systematic data directly assessing the impact of technological innovations on study recruitment and retention in CNS trials, even for strategies with already high adoption, such as online recruitment. Given the added complexity and costs associated with most technological innovations, such data is needed to fully harness technologies for CNS trials and drive further adoption.

摘要

目的

在中枢神经系统(CNS)试验中招募足够大且具有代表性的患者样本并使其在试验过程中保持参与,这对研究赞助商而言是重大挑战。技术进步正在重塑临床试验运作以应对这些挑战,而新冠疫情进一步加速了这一发展。

研究方法

中枢神经系统临床试验与方法国际协会(ISCTM;www.isctm.org)中枢神经系统试验创新技术工作组调查了用于改善招募和保持参与率的技术创新状况,并评估了其前景与缺陷。

结果

在线广告和电子患者登记系统可提高招募效率,但样本代表性、从符合预筛选条件到入组患者的转化率、数据隐私与安全以及患者识别等方面的挑战,仍然是这些技术实现最佳应用的障碍。利用人工智能(AI)/机器学习(ML)方法挖掘电子病历(EMR)很有前景,但有待应用于试验。在研究治疗阶段,技术创新越来越多地支持参与者保持参与,包括坚持接受试验性治疗。用于支持坚持治疗和保持参与的数字工具形式多样,包括研究人员与参与者之间以患者为中心的沟通渠道、实时研究提醒以及增加研究依从性的数字行为干预措施。然而,此类工具增加了试验的技术复杂性,并且它们对结果普遍性的影响在很大程度上尚不清楚。

结论

总体而言,该小组发现直接评估技术创新对中枢神经系统试验中研究招募和保持参与率影响的系统性数据匮乏,即使对于诸如在线招募等已被广泛采用的策略亦是如此。鉴于大多数技术创新带来的额外复杂性和成本,需要此类数据来充分利用中枢神经系统试验的技术并推动其进一步应用。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
9
Digitizing clinical trials.临床试验数字化。
NPJ Digit Med. 2020 Jul 31;3:101. doi: 10.1038/s41746-020-0302-y. eCollection 2020.

本文引用的文献

1
Early-stage Alzheimer disease: getting trial-ready.早期阿尔茨海默病:做好试验准备。
Nat Rev Neurol. 2022 Jul;18(7):389-399. doi: 10.1038/s41582-022-00645-6. Epub 2022 Apr 4.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验