Suppr超能文献

基于深度学习的超声引导锁骨上阻滞最佳视野检测。

Optimal view detection for ultrasound-guided supraclavicular block using deep learning approaches.

机构信息

Department of Anaesthesiology and Pain Medicine, College of Medicine, Chungnam National University and Hospital, 282 Munhwar-ro, Jung-gu, Daejeon, 35015, Republic of Korea.

Department of Biomedical Engineering, College of Medicine, Chungnam National University and Hospital, Daejeon, Republic of Korea.

出版信息

Sci Rep. 2023 Oct 11;13(1):17209. doi: 10.1038/s41598-023-44170-y.

Abstract

Successful ultrasound-guided supraclavicular block (SCB) requires the understanding of sonoanatomy and identification of the optimal view. Segmentation using a convolutional neural network (CNN) is limited in clearly determining the optimal view. The present study describes the development of a computer-aided diagnosis (CADx) system using a CNN that can determine the optimal view for complete SCB in real time. The aim of this study was the development of computer-aided diagnosis system that aid non-expert to determine the optimal view for complete supraclavicular block in real time. Ultrasound videos were retrospectively collected from 881 patients to develop the CADx system (600 to the training and validation set and 281 to the test set). The CADx system included classification and segmentation approaches, with Residual neural network (ResNet) and U-Net, respectively, applied as backbone networks. In the classification approach, an ablation study was performed to determine the optimal architecture and improve the performance of the model. In the segmentation approach, a cascade structure, in which U-Net is connected to ResNet, was implemented. The performance of the two approaches was evaluated based on a confusion matrix. Using the classification approach, ResNet34 and gated recurrent units with augmentation showed the highest performance, with average accuracy 0.901, precision 0.613, recall 0.757, f1-score 0.677 and AUROC 0.936. Using the segmentation approach, U-Net combined with ResNet34 and augmentation showed poorer performance than the classification approach. The CADx system described in this study showed high performance in determining the optimal view for SCB. This system could be expanded to include many anatomical regions and may have potential to aid clinicians in real-time settings.Trial registration The protocol was registered with the Clinical Trial Registry of Korea (KCT0005822, https://cris.nih.go.kr ).

摘要

成功的超声引导锁骨下阻滞(SCB)需要了解声解剖结构并确定最佳视图。使用卷积神经网络(CNN)进行分割在明确确定最佳视图方面存在局限性。本研究描述了一种使用 CNN 实时确定完整 SCB 最佳视图的计算机辅助诊断(CADx)系统的开发。本研究的目的是开发一种计算机辅助诊断系统,帮助非专家实时确定完整锁骨下阻滞的最佳视图。从 881 名患者中回顾性收集超声视频以开发 CADx 系统(600 个用于训练和验证集,281 个用于测试集)。CADx 系统包括分类和分割方法,分别应用残差神经网络(ResNet)和 U-Net 作为骨干网络。在分类方法中,进行了消融研究以确定最佳架构并提高模型性能。在分割方法中,实现了级联结构,其中 U-Net 连接到 ResNet。基于混淆矩阵评估两种方法的性能。使用分类方法,ResNet34 和具有增强功能的门控循环单元显示出最高的性能,平均准确率为 0.901,精度为 0.613,召回率为 0.757,f1 得分为 0.677,AUROC 为 0.936。使用分割方法,U-Net 与 ResNet34 结合且具有增强功能的性能不如分类方法。本研究中描述的 CADx 系统在确定 SCB 的最佳视图方面表现出很高的性能。该系统可以扩展到包括许多解剖区域,并可能有助于临床医生在实时环境中进行操作。试验注册 该方案已在韩国临床试验注册中心(KCT0005822,https://cris.nih.go.kr)注册。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验