Di Biasi Luigi, De Marco Fabiola, Auriemma Citarella Alessia, Castrillón-Santana Modesto, Barra Paola, Tortora Genoveffa
Department of Computer Science, University of Salerno, Fisciano, Italy.
Department of Computer Science, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
BMC Bioinformatics. 2023 Oct 11;24(1):386. doi: 10.1186/s12859-023-05516-5.
Melanoma is one of the deadliest tumors in the world. Early detection is critical for first-line therapy in this tumor pathology and it remains challenging due to the need for histological analysis to ensure correctness in diagnosis. Therefore, multiple computer-aided diagnosis (CAD) systems working on melanoma images were proposed to mitigate the need of a biopsy. However, although the high global accuracy is declared in literature results, the CAD systems for the health fields must focus on the lowest false negative rate (FNR) possible to qualify as a diagnosis support system. The final goal must be to avoid classification type 2 errors to prevent life-threatening situations. Another goal could be to create an easy-to-use system for both physicians and patients.
To achieve the minimization of type 2 error, we performed a wide exploratory analysis of the principal convolutional neural network (CNN) architectures published for the multiple image classification problem; we adapted these networks to the melanoma clinical image binary classification problem (MCIBCP). We collected and analyzed performance data to identify the best CNN architecture, in terms of FNR, usable for solving the MCIBCP problem. Then, to provide a starting point for an easy-to-use CAD system, we used a clinical image dataset (MED-NODE) because clinical images are easier to access: they can be taken by a smartphone or other hand-size devices. Despite the lower resolution than dermoscopic images, the results in the literature would suggest that it would be possible to achieve high classification performance by using clinical images. In this work, we used MED-NODE, which consists of 170 clinical images (70 images of melanoma and 100 images of naevi). We optimized the following CNNs for the MCIBCP problem: Alexnet, DenseNet, GoogleNet Inception V3, GoogleNet, MobileNet, ShuffleNet, SqueezeNet, and VGG16.
The results suggest that a CNN built on the VGG or AlexNet structure can ensure the lowest FNR (0.07) and (0.13), respectively. In both cases, discrete global performance is ensured: 73% (accuracy), 82% (sensitivity) and 59% (specificity) for VGG; 89% (accuracy), 87% (sensitivity) and 90% (specificity) for AlexNet.
黑色素瘤是世界上最致命的肿瘤之一。早期检测对于这种肿瘤病理学的一线治疗至关重要,但由于需要进行组织学分析以确保诊断的正确性,早期检测仍然具有挑战性。因此,人们提出了多种用于黑色素瘤图像的计算机辅助诊断(CAD)系统,以减少活检的需求。然而,尽管文献报道的整体准确率较高,但用于健康领域的CAD系统必须尽可能关注最低的假阴性率(FNR),才能被认定为诊断支持系统。最终目标必须是避免II类错误分类,以防止危及生命的情况发生。另一个目标可能是创建一个对医生和患者都易于使用的系统。
为了实现II类错误的最小化,我们对针对多图像分类问题发表的主要卷积神经网络(CNN)架构进行了广泛的探索性分析;我们将这些网络应用于黑色素瘤临床图像二分类问题(MCIBCP)。我们收集并分析了性能数据,以确定就FNR而言,可用于解决MCIBCP问题的最佳CNN架构。然后,为了为易于使用的CAD系统提供一个起点,我们使用了一个临床图像数据集(MED-NODE),因为临床图像更容易获取:它们可以由智能手机或其他手掌大小的设备拍摄。尽管临床图像的分辨率低于皮肤镜图像,但文献中的结果表明,使用临床图像有可能实现较高的分类性能。在这项工作中,我们使用了MED-NODE,它由170张临床图像组成(70张黑色素瘤图像和100张痣图像)。我们针对MCIBCP问题对以下CNN进行了优化:Alexnet、DenseNet、GoogleNet Inception V3、GoogleNet、MobileNet、ShuffleNet、SqueezeNet和VGG16。
结果表明,基于VGG或AlexNet结构构建的CNN分别可以确保最低的FNR(0.07)和(0.13)。在这两种情况下,都确保了离散的整体性能:VGG的准确率为73%、灵敏度为82%、特异性为59%;AlexNet的准确率为89%、灵敏度为87%、特异性为90%。