Ezzeddine Fatima, Ayoub Omran, Giordano Silvia, Nogara Gianluca, Sbeity Ihab, Ferrara Emilio, Luceri Luca
Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland.
Department of Applied Mathematics, Faculty of Science, Lebanese University, Beirut, Lebanon.
EPJ Data Sci. 2023;12(1):46. doi: 10.1140/epjds/s13688-023-00423-4. Epub 2023 Oct 9.
The detection of state-sponsored trolls operating in influence campaigns on social media is a critical and unsolved challenge for the research community, which has significant implications beyond the online realm. To address this challenge, we propose a new AI-based solution that identifies troll accounts solely through behavioral cues associated with their sequences of sharing activity, encompassing both their actions and the feedback they receive from others. Our approach does not incorporate any textual content shared and consists of two steps: First, we leverage an LSTM-based classifier to determine whether account sequences belong to a state-sponsored troll or an organic, legitimate user. Second, we employ the classified sequences to calculate a metric named the "Troll Score", quantifying the degree to which an account exhibits troll-like behavior. To assess the effectiveness of our method, we examine its performance in the context of the 2016 Russian interference campaign during the U.S. Presidential election. Our experiments yield compelling results, demonstrating that our approach can identify account sequences with an AUC close to 99% and accurately differentiate between Russian trolls and organic users with an AUC of 91%. Notably, our behavioral-based approach holds a significant advantage in the ever-evolving landscape, where textual and linguistic properties can be easily mimicked by Large Language Models (LLMs): In contrast to existing language-based techniques, it relies on more challenging-to-replicate behavioral cues, ensuring greater resilience in identifying influence campaigns, especially given the potential increase in the usage of LLMs for generating inauthentic content. Finally, we assessed the generalizability of our solution to various entities driving different information operations and found promising results that will guide future research.
检测在社交媒体上开展影响活动的受国家支持的网络水军,对研究界来说是一项关键且尚未解决的挑战,其影响远远超出网络领域。为应对这一挑战,我们提出了一种基于人工智能的新解决方案,该方案仅通过与其分享活动序列相关的行为线索来识别网络水军账户,这些线索包括他们的行为以及他们从他人那里获得的反馈。我们的方法不纳入任何共享的文本内容,包括两个步骤:首先,我们利用基于长短期记忆网络(LSTM)的分类器来确定账户序列属于受国家支持的网络水军还是普通的合法用户。其次,我们使用分类后的序列来计算一个名为“水军分数”的指标,以量化一个账户表现出水军式行为的程度。为评估我们方法的有效性,我们在美国2016年总统选举期间俄罗斯干预活动的背景下检验了其性能。我们的实验产生了令人信服的结果,表明我们的方法能够识别AUC接近99%的账户序列,并以91%的AUC准确区分俄罗斯网络水军和普通用户。值得注意的是,在文本和语言属性很容易被大语言模型(LLM)模仿的不断演变的环境中,我们基于行为的方法具有显著优势:与现有的基于语言的技术相比,它依赖于更难复制的行为线索,从而在识别影响活动方面具有更强的适应性,特别是考虑到使用大语言模型生成虚假内容的可能性增加。最后,我们评估了我们的解决方案对推动不同信息行动的各种实体的通用性,并发现了有前景的结果,这将为未来的研究提供指导。