Suppr超能文献

#2020年选举:首个关于2020年美国总统选举的公开推特数据集。

#Election2020: the first public Twitter dataset on the 2020 US Presidential election.

作者信息

Chen Emily, Deb Ashok, Ferrara Emilio

机构信息

Information Sciences Institute, University of Southern California, 4676 Admiralty Way, #1001, Marina del Rey, CA 90292 USA.

出版信息

J Comput Soc Sci. 2022;5(1):1-18. doi: 10.1007/s42001-021-00117-9. Epub 2021 Apr 2.

Abstract

Credible evidence-based political discourse is a critical pillar of democracy and is at the core of guaranteeing free and fair elections. The study of online chatter is paramount, especially in the wake of important voting events like the recent November 3, 2020 U.S. Presidential election and the inauguration on January 21, 2021. Limited access to social media data is often the primary obstacle that limits our abilities to study and understand online political discourse. To mitigate this impediment and empower the Computational Social Science research community, we are publicly releasing a massive-scale, longitudinal dataset of U.S. politics- and election-related tweets. This multilingual dataset encompasses over 1.2 billion tweets and tracks all salient U.S. political trends, actors, and events from 2019 to the time of this writing. It predates and spans the entire period of the Republican and Democratic primaries, with real-time tracking of all presidential contenders on both sides of the aisle. The dataset also focuses on presidential and vice-presidential candidates, the presidential elections and the transition from the Trump administration to the Biden administration. Our dataset release is curated, documented, and will continue to track relevant events. We hope that the academic community, computational journalists, and research practitioners alike will all take advantage of our dataset to study relevant scientific and social issues, including problems like misinformation, information manipulation, conspiracies, and the distortion of online political discourse that has been prevalent in the context of recent election events in the United States. Our dataset is available at: https://github.com/echen102/us-pres-elections-2020.

摘要

可信的基于证据的政治话语是民主的关键支柱,也是保障自由公平选举的核心。对网络言论的研究至关重要,尤其是在诸如2020年11月3日的美国总统大选和2021年1月21日的就职典礼等重要投票活动之后。社交媒体数据获取受限往往是限制我们研究和理解网络政治话语能力的主要障碍。为了减轻这一障碍并赋能计算社会科学研究群体,我们正在公开发布一个大规模的、关于美国政治和选举相关推文的纵向数据集。这个多语言数据集包含超过12亿条推文,追踪了从2019年到撰写本文时所有显著的美国政治趋势、行为主体和事件。它早于并涵盖了共和党和民主党初选的整个时期,实时追踪两党所有总统候选人。该数据集还聚焦于总统和副总统候选人、总统选举以及从特朗普政府到拜登政府的过渡。我们发布的数据集经过精心策划、记录,并将继续追踪相关事件。我们希望学术界、计算新闻学领域的人士以及研究从业者都能利用我们的数据集来研究相关的科学和社会问题,包括虚假信息、信息操纵、阴谋论以及在美国近期选举事件背景下盛行已久的网络政治话语扭曲等问题。我们的数据集可在以下网址获取:https://github.com/echen102/us-pres-elections-2020

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcba/8017518/2ceead26f07e/42001_2021_117_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验