Moleculaire Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands.
Methods Mol Biol. 2024;2694:295-316. doi: 10.1007/978-1-0716-3377-9_14.
Imaging of nano-sized particles and sample features is crucial in a variety of research fields, for instance, in biological sciences, where it is paramount to investigate structures at the single particle level. Often, two-dimensional images are not sufficient, and further information such as topography and mechanical properties are required. Furthermore, to increase the biological relevance, it is desired to perform the imaging in close to physiological environments. Atomic force microscopy (AFM) meets these demands in an all-in-one instrument. It provides high-resolution images including surface height information leading to three-dimensional information on sample morphology. AFM can be operated both in air and in buffer solutions. Moreover, it has the capacity to determine protein and membrane material properties via the force spectroscopy mode. Here we discuss the principles of AFM operation and provide examples of how biomolecules can be studied. New developments in AFM are discussed, and by including approaches such as bimodal AFM and high-speed AFM (HS-AFM), we show how AFM can be used to study a variety of static and dynamic single biomolecules and biomolecular assemblies.
纳米颗粒和样品特征的成像在许多研究领域都至关重要,例如在生物科学领域,研究单个颗粒水平的结构至关重要。通常,二维图像是不够的,还需要进一步的信息,如形貌和机械性能。此外,为了提高生物学相关性,希望在接近生理环境中进行成像。原子力显微镜 (AFM) 在一种仪器中满足了这些需求。它提供高分辨率图像,包括表面高度信息,从而提供样品形态的三维信息。AFM 可以在空气和缓冲溶液中操作。此外,它还可以通过力谱模式来确定蛋白质和膜材料的特性。在这里,我们讨论了 AFM 操作的原理,并提供了一些研究生物分子的示例。讨论了 AFM 的新发展,并通过包括双模态 AFM 和高速 AFM (HS-AFM) 等方法,展示了 AFM 如何用于研究各种静态和动态的单个生物分子和生物分子组装体。