Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
Biomater Sci. 2023 Nov 21;11(23):7598-7615. doi: 10.1039/d3bm00721a.
Microgel-based biomaterials have inherent porosity and are often extrudable, making them well-suited for 3D bioprinting applications. Cells are commonly introduced into these granular inks post-printing using cell infiltration. However, due to slow cell migration speeds, this strategy struggles to achieve depth-independent cell distributions within thick 3D printed geometries. To address this, we leverage granular ink modularity by combining two microgels with distinct functions: (1) structural, UV-crosslinkable microgels made from gelatin methacryloyl (GelMA) and (2) sacrificial, cell-laden microgels made from oxidized alginate (AlgOx). We hypothesize that encapsulating cells within sacrificial AlgOx microgels would enable the simultaneous introduction of void space and release of cells at depths unachievable through cell infiltration alone. Blending the microgels in different ratios produces a family of highly printable GelMA : AlgOx microgel inks with void fractions ranging from 0.03 to 0.35. As expected, void fraction influences the morphology of human umbilical vein endothelial cells (HUVEC) within GelMA : AlgOx inks. Crucially, void fraction does not alter the ideal HUVEC distribution seen throughout the depth of 3D printed samples. This work presents a strategy for fabricating constructs with tunable porosity and depth-independent cell distribution, highlighting the promise of microgel-based inks for 3D bioprinting.
基于微凝胶的生物材料具有固有孔隙率,并且通常可挤出,非常适合 3D 生物打印应用。通常在打印后通过细胞渗透将细胞引入这些颗粒油墨中。然而,由于细胞迁移速度较慢,这种策略难以在厚的 3D 打印结构中实现与深度无关的细胞分布。为了解决这个问题,我们利用颗粒油墨的模块性,将两种具有不同功能的微凝胶结合在一起:(1)由明胶甲基丙烯酰(GelMA)制成的结构、UV 交联微凝胶,(2)由氧化海藻酸钠(AlgOx)制成的牺牲、细胞负载微凝胶。我们假设将细胞封装在牺牲性的 AlgOx 微凝胶中,将能够同时在单独的细胞渗透无法达到的深度引入空隙空间并释放细胞。以不同比例混合微凝胶可产生一系列具有高可打印性的 GelMA:AlgOx 微凝胶油墨,空隙分数范围为 0.03 至 0.35。正如预期的那样,空隙分数会影响 GelMA:AlgOx 油墨中人类脐静脉内皮细胞(HUVEC)的形态。至关重要的是,空隙分数不会改变在整个 3D 打印样品深度中看到的理想 HUVEC 分布。这项工作提出了一种制造具有可调孔隙率和与深度无关的细胞分布的构建体的策略,突出了基于微凝胶的油墨在 3D 生物打印中的应用前景。