Suppr超能文献

基于Transformer 的肺部听诊声音精确分类网络。

Transformer-Based Network for Accurate Classification of Lung Auscultation Sounds.

机构信息

Department of Electronics and Communication Engineering, Ramaiah Institute of Technology, Bengaluru, India.

出版信息

Crit Rev Biomed Eng. 2023;51(6):1-16. doi: 10.1615/CritRevBiomedEng.2023048981.

Abstract

Respiratory diseases are a major cause of death worldwide, affecting a significant proportion of the population with lung function abnormalities that can lead to respiratory illnesses. Early detection and prevention are critical to effective management of these disorders. Deep learning algorithms offer a promising approach for analyzing complex medical data and aiding in early disease detection. While transformer-based models for sequence classification have proven effective for tasks like sentiment analysis, topic classification, etc., their potential for respiratory disease classification remains largely unexplored. This paper proposes a classifier utilizing the transformer-encoder block, which can capture complex patterns and dependencies in medical data. The proposed model is trained and evaluated on a large dataset from the International Conference on Biomedical Health Informatics 2017, achieving state-of-the-art results with a mean sensitivity of 70.53%, mean specificity of 84.10%, mean average score of 77.32%, and mean harmonic score of 76.10%. These results demonstrate the model's effectiveness in diagnosing respiratory diseases while taking up minimal computational resources.

摘要

呼吸系统疾病是全球范围内主要的死亡原因之一,影响了相当一部分人群,导致其肺部功能异常,进而引发呼吸系统疾病。早期发现和预防对于这些疾病的有效管理至关重要。深度学习算法为分析复杂的医学数据和辅助早期疾病检测提供了一种很有前途的方法。尽管基于转换器的序列分类算法在情感分析、主题分类等任务中已经被证明是有效的,但它们在呼吸系统疾病分类方面的潜力在很大程度上仍未得到探索。本文提出了一种利用转换器编码器块的分类器,该分类器可以捕捉医学数据中的复杂模式和依赖关系。该模型在来自 2017 年国际生物医学健康信息学会议的大型数据集上进行了训练和评估,取得了最先进的结果,平均灵敏度为 70.53%,平均特异性为 84.10%,平均综合得分为 77.32%,平均调和得分为 76.10%。这些结果表明,该模型在诊断呼吸系统疾病方面具有有效性,同时占用的计算资源很少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验