Landry Vivianne, Matschek Jessica, Pang Roger, Munipalle Meghana, Tan Kenneth, Boruff Jill, Li-Jessen Nicole Y K
Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
School of Communication Sciences and Disorders, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
Eur Respir Rev. 2025 May 14;34(176). doi: 10.1183/16000617.0246-2024. Print 2025 Apr.
Advances in wearable sensors and artificial intelligence have greatly enhanced the potential of digitised audio biomarkers for disease diagnostics and monitoring. In respiratory care, evidence supporting their clinical use remains fragmented and inconclusive. This study aimed to assess the current research landscape of digital audio biomarkers in respiratory medicine through a bibliometric analysis and systematic review (PROSPERO CRD 42022336730). MEDLINE, Embase, Cochrane Library and CINAHL were searched for references indexed up to 9 April 2024. Eligible studies evaluated the accuracy of sound analysis for diagnosing and managing obstructive (asthma and COPD) or infectious respiratory diseases, excluding COVID-19. A narrative synthesis was conducted, and the QUADAS-2 tool was used to assess study quality and risk of bias. Of 14 180 studies, 81 were included. Bibliometric analysis identified fundamental ( "diagnostic accuracy"+"machine learning") and emerging ( "developing countries") themes. Despite methodological heterogeneity, audio biomarkers generally achieved moderate (60-79%) to high (80-100%) accuracies. 80% of studies (eight out of ten) reported high sensitivities and specificities for asthma diagnosis, 78% (seven out of nine) reported high sensitivities and 56% (five out of nine) reported high specificities for COPD, and 64% (seven out of eleven) reported high sensitivity or specificity values for pneumonia diagnosis. Breathing and coughing were the most common biomarkers, with artificial neural networks being the most common analysis technique. Future research on audio biomarkers should focus on testing their validity in clinically diverse populations and resolving algorithmic bias. If successful, digital audio biomarkers hold promise for complementing existing clinical tools in enabling more accessible applications in telemedicine, communicable disease monitoring, and chronic condition management.
可穿戴传感器和人工智能的进步极大地提升了数字化音频生物标志物在疾病诊断和监测方面的潜力。在呼吸护理领域,支持其临床应用的证据仍然零散且尚无定论。本研究旨在通过文献计量分析和系统评价(PROSPERO CRD 42022336730)评估呼吸医学中数字音频生物标志物的当前研究状况。检索了MEDLINE、Embase、Cochrane图书馆和CINAHL,查找截至2024年4月9日收录的参考文献。符合条件的研究评估了声音分析在诊断和管理阻塞性(哮喘和慢性阻塞性肺疾病)或感染性呼吸道疾病(不包括COVID-19)方面的准确性。进行了叙述性综合分析,并使用QUADAS-2工具评估研究质量和偏倚风险。在14180项研究中,纳入了81项。文献计量分析确定了基础主题(“诊断准确性”+“机器学习”)和新兴主题(“发展中国家”)。尽管方法存在异质性,但音频生物标志物总体上达到了中等(60-79%)至高(80-100%)的准确率。80%的研究(十项中的八项)报告了哮喘诊断的高敏感性和特异性,78%(九项中的七项)报告了慢性阻塞性肺疾病的高敏感性,56%(九项中的五项)报告了慢性阻塞性肺疾病的高特异性,64%(十一项中的七项)报告了肺炎诊断的高敏感性或特异性值。呼吸和咳嗽是最常见的生物标志物,人工神经网络是最常见的分析技术。音频生物标志物的未来研究应侧重于在临床多样化人群中测试其有效性并解决算法偏倚问题。如果成功,数字音频生物标志物有望在远程医疗、传染病监测和慢性病管理中补充现有临床工具,实现更便捷的应用。