文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在类蛋白微球体聚集体中的学习。

Learning in ensembles of proteinoid microspheres.

作者信息

Mougkogiannis Panagiotis, Adamatzky Andrew

机构信息

Unconventional Computing Laboratory, UWE, Bristol, UK.

出版信息

R Soc Open Sci. 2023 Oct 11;10(10):230936. doi: 10.1098/rsos.230936. eCollection 2023 Oct.


DOI:10.1098/rsos.230936
PMID:37830018
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10565364/
Abstract

Proteinoids are thermal proteins which form microspheres in water in the presence of salt. Ensembles of proteinoid microspheres exhibit passive nonlinear electrical properties and active neuron-like spiking of electrical potential. We propose that various neuromorphic computing architectures can be prototyped from the proteinoid microspheres. A key feature of a neuromorphic system is a learning. Through the use of optical and resistance measurements, we study mechanisms of learning in ensembles of proteinoid microspheres. We analyse 16 types of proteinoids study and their intrinsic morphology and electrical properties. We demonstrate that proteinoids can learn, memorize and habituate, making them a promising candidate for novel computing.

摘要

类蛋白是热蛋白,在有盐存在的情况下于水中形成微球体。类蛋白微球体集合体表现出被动非线性电学特性以及类似神经元的主动电位尖峰。我们提出,可以从类蛋白微球体构建各种神经形态计算架构的原型。神经形态系统的一个关键特征是学习。通过使用光学和电阻测量,我们研究类蛋白微球体集合体中的学习机制。我们分析了16种类蛋白的研究及其内在形态和电学特性。我们证明类蛋白能够学习、记忆和习惯化,使其成为新型计算的有前途的候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/da7b875e542b/rsos230936f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/5cee4c01b773/rsos230936f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/d4021870153e/rsos230936f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/b6f084a6b0a2/rsos230936f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/373f21eef900/rsos230936f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/2572d96ae49d/rsos230936f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/b534432fcb37/rsos230936f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/f64a3b9d2f8c/rsos230936f07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/c08dce10be0d/rsos230936f08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/0c977de3888f/rsos230936f09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/4aa4f5f43e17/rsos230936f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/a15c0f2ec263/rsos230936f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/dbc77ccfa487/rsos230936f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/da7b875e542b/rsos230936f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/5cee4c01b773/rsos230936f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/d4021870153e/rsos230936f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/b6f084a6b0a2/rsos230936f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/373f21eef900/rsos230936f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/2572d96ae49d/rsos230936f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/b534432fcb37/rsos230936f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/f64a3b9d2f8c/rsos230936f07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/c08dce10be0d/rsos230936f08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/0c977de3888f/rsos230936f09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/4aa4f5f43e17/rsos230936f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/a15c0f2ec263/rsos230936f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/dbc77ccfa487/rsos230936f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/10565364/da7b875e542b/rsos230936f13.jpg

相似文献

[1]
Learning in ensembles of proteinoid microspheres.

R Soc Open Sci. 2023-10-11

[2]
Transfer functions of proteinoid microspheres.

Biosystems. 2023-5

[3]
Logical gates in ensembles of proteinoid microspheres.

PLoS One. 2023

[4]
On interaction of proteinoids with simulated neural networks.

Biosystems. 2024-3

[5]
Towards proteinoid computers. Hypothesis paper.

Biosystems. 2021-10

[6]
Recognition of sounds by ensembles of proteinoids.

Mater Today Bio. 2024-2-13

[7]
The Effects of Omeprazole on the Neuron-like Spiking of the Electrical Potential of Proteinoid Microspheres.

Molecules. 2024-10-4

[8]
Low frequency electrical waves in ensembles of proteinoid microspheres.

Sci Rep. 2023-2-3

[9]
On Effect of Chloroform on Electrical Activity of Proteinoids.

Biomimetics (Basel). 2024-6-23

[10]
Light induced spiking of proteinoids.

Biosystems. 2023-10

引用本文的文献

[1]
Modulation of Proteinoid Electrical Spiking Activity with Magnetic Nanoparticles.

Langmuir. 2025-6-10

[2]
On Emergence of Spontaneous Oscillations in Kombucha and Proteinoids.

Bionanoscience. 2025

[3]
Optical Recognition of the English Alphabet Using Proteinoids.

ACS Omega. 2024-12-17

[4]
The Effects of Omeprazole on the Neuron-like Spiking of the Electrical Potential of Proteinoid Microspheres.

Molecules. 2024-10-4

[5]
On Effect of Chloroform on Electrical Activity of Proteinoids.

Biomimetics (Basel). 2024-6-23

[6]
Memfractance of Proteinoids.

ACS Omega. 2024-3-18

本文引用的文献

[1]
Low frequency electrical waves in ensembles of proteinoid microspheres.

Sci Rep. 2023-2-3

[2]
Tracking Development of Connectivity in the Human Brain: Axons and Dendrites.

Biol Psychiatry. 2023-3-1

[3]
An Account of Models of Molecular Circuits for Associative Learning with Reinforcement Effect and Forced Dissociation.

Sensors (Basel). 2022-8-7

[4]
The effect of electrical stimulation on cortical cells in 3D nanofibrous scaffolds.

RSC Adv. 2018-3-20

[5]
Quantifying structural relationships of metal-binding sites suggests origins of biological electron transfer.

Sci Adv. 2022-1-14

[6]
Diode and Active Negative Resistance Behaviors of Helminth Eggs as a Novel Identification/Differentiation Probe.

ACS Omega. 2021-12-3

[7]
The translatome of neuronal cell bodies, dendrites, and axons.

Proc Natl Acad Sci U S A. 2021-10-26

[8]
Towards proteinoid computers. Hypothesis paper.

Biosystems. 2021-10

[9]
Novel hardware and concepts for unconventional computing.

Sci Rep. 2020-7-16

[10]
The Origin and Early Evolution of Life: Prebiotic Chemistry.

Life (Basel). 2019-9-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索