Suppr超能文献

一条动态水通道影响[铁铁]氢化酶中的O稳定性。

A Dynamic Water Channel Affects O Stability in [FeFe]-Hydrogenases.

作者信息

Brocks Claudia, Das Chandan K, Duan Jifu, Yadav Shanika, Apfel Ulf-Peter, Ghosh Subhasri, Hofmann Eckhard, Winkler Martin, Engelbrecht Vera, Schäfer Lars V, Happe Thomas

机构信息

Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.

Faculty of Chemistry and Biochemistry, Center for Theoretical Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.

出版信息

ChemSusChem. 2024 Feb 8;17(3):e202301365. doi: 10.1002/cssc.202301365. Epub 2023 Nov 17.

Abstract

[FeFe]-hydrogenases are capable of reducing protons at a high rate. However, molecular oxygen (O ) induces the degradation of their catalytic cofactor, the H-cluster, which consists of a cubane [4Fe4S] subcluster (4Fe ) and a unique diiron moiety (2Fe ). Previous attempts to prevent O -induced damage have focused on enhancing the protein's sieving effect for O by blocking the hydrophobic gas channels that connect the protein surface and the 2Fe . In this study, we aimed to block an O diffusion pathway and shield 4Fe instead. Molecular dynamics (MD) simulations identified a novel water channel (W ) surrounding the H-cluster. As this hydrophilic path may be accessible for O molecules we applied site-directed mutagenesis targeting amino acids along W in proximity to 4Fe to block O diffusion. Protein film electrochemistry experiments demonstrate increased O stabilities for variants G302S and S357T, and MD simulations based on high-resolution crystal structures confirmed an enhanced local sieving effect for O in the environment of the 4Fe in both cases. The results strongly suggest that, in wild type proteins, O diffuses from the 4Fe to the 2Fe . These results reveal new strategies for improving the O stability of [FeFe]-hydrogenases by focusing on the O diffusion network near the active site.

摘要

[铁铁]氢化酶能够高速还原质子。然而,分子氧(O₂)会导致其催化辅因子H簇降解,H簇由一个立方烷型[4Fe₄S]亚簇(4Fe)和一个独特的双铁部分(2Fe)组成。此前防止O₂诱导损伤的尝试主要集中在通过阻塞连接蛋白质表面和2Fe的疏水气体通道来增强蛋白质对O₂的筛分作用。在本研究中,我们旨在阻断O₂的扩散途径并保护4Fe。分子动力学(MD)模拟确定了H簇周围一条新的水通道(W)。由于这条亲水通道可能对O₂分子开放,我们对靠近4Fe的W沿线氨基酸进行定点诱变以阻断O₂扩散。蛋白质膜电化学实验表明变体G302S和S357T的O₂稳定性增强,基于高分辨率晶体结构的MD模拟证实两种情况下4Fe环境中对O₂的局部筛分作用均增强。结果有力地表明,在野生型蛋白质中,O₂从4Fe扩散到2Fe。这些结果揭示了通过关注活性位点附近的O₂扩散网络来提高[铁铁]氢化酶O₂稳定性的新策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验