Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France.
Faraday Discuss. 2011;148:385-407; discussion 421-41. doi: 10.1039/c004099c.
We investigated di-hydrogen transport between the solvent and the active site of FeFe hydrogenases. Substrate channels supposedly exist and serve various functions in certain redox enzymes which use or produce O2, H2, NO, CO, or N2, but the preferred paths have not always been unambiguously identified, and whether a continuous, permanent channel is an absolute requirement for transporting diatomic molecules is unknown. Here, we review the literature on gas channels in proteins and enzymes and we report on the use of site-directed mutagenesis and various kinetic methods, which proved useful for characterizing substrate access to the active site of NiFe hydrogenase to test the putative "static" H2 channel of FeFe hydrogenases. We designed 8 mutations in attempts to interfere with intramolecular diffusion by remodeling this putative route in Clostridium acetobutylicum FeFe hydrogenase, and we observed that none of them has a strong effect on any of the enzyme's kinetic properties. We suggest that H2 may diffuse either via transient cavities, or along a conserved water-filled channel. Nitrogenase sets a precedent for the involvement of a hydrophilic channel to conduct hydrophobic molecules.
我们研究了二氢在溶剂和 FeFe 氢化酶活性位点之间的传输。在某些使用或产生 O2、H2、NO、CO 或 N2 的氧化还原酶中,据称存在底物通道,并具有各种功能,但首选路径并不总是明确确定,并且是否连续、永久的通道是传输双原子分子的绝对要求尚不清楚。在这里,我们回顾了关于蛋白质和酶中气体通道的文献,并报告了使用定点突变和各种动力学方法,这些方法对于表征 NiFe 氢化酶活性位点的底物进入非常有用,以测试 FeFe 氢化酶中假定的“静态”H2 通道。我们设计了 8 种突变,试图通过重塑这种假定的途径来干扰分子内扩散在丙酮丁醇梭菌 FeFe 氢化酶中,我们观察到它们都没有对任何一种酶的动力学性质产生强烈影响。我们认为 H2 可能通过瞬态空腔或沿着保守的充满水的通道扩散。氮酶为参与疏水分子的亲水性通道提供了先例。