强化FeS簇通过对O通道的多层密封将厌氧CO脱氢酶重塑为一种可在空气中存活的酶。
Fortification of FeS Clusters Reshapes Anaerobic CO Dehydrogenase into an Air-Viable Enzyme Through Multilayered Sealing of O Tunnels.
作者信息
Kim Suk Min, Kong So Yeon, Kang Jingu, Ji Jeong Seok, Kang Sung Heuck, Yoon Hye-Jin, Kim Hyunwoo, Ryu Jungki, Lee Hyung Ho, Kim Yong Hwan
机构信息
Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
出版信息
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202508565. doi: 10.1002/anie.202508565. Epub 2025 Jun 12.
The inherent O sensitivity of Ni─Fe carbon monoxide dehydrogenases (CODHs), crucial for rapid CO to CO interconversion, presents substantial challenges for industrial application. Transforming CO/CO, a prevalent anthropogenic air pollutant, into valuable carbon chemicals either directly or through intermediate steps via biocatalytic methods offers a promising pathway to achieve net-zero emissions across industries and the environment. However, completely eliminating oxygen from industrial biotransformations, especially under ambient conditions, is exceedingly onerous. Here, we engineered variants of the CODH2 from Carboxydothermus hydrogenoformans (ChCODH2) with dual blocking at both the O entrance and near the active site, effectively sealing the tunnel against atmospheric O levels (20%). The O-tunnel engineered A559W/V610H variant demonstrated a marked improvement in air stability, with a half-life of 24.6 h compared to the wild type's 2.4 h. Crystallographic snapshots of this air-viable variant after 24 h of exposure revealed the robust integrity of the fortified FeS and NiFeS clusters. Additionally, electro-enzymatic reactions corroborated its CO/CO conversion capability even in ubiquitous air. These findings, which address the O sensitivity of anaerobic enzymes caused by O-induced metal cluster collapse, enhance their potential for biological CO/CO transformations in O-rich environments, thereby broadening their industrial viability and applicability.
镍铁一氧化碳脱氢酶(CODHs)固有的氧气敏感性对一氧化碳的快速相互转化至关重要,但这给其工业应用带来了巨大挑战。通过生物催化方法将普遍存在的人为空气污染物一氧化碳/二氧化碳直接或通过中间步骤转化为有价值的碳化学品,为实现各行业和环境的净零排放提供了一条有前景的途径。然而,在工业生物转化过程中完全去除氧气,尤其是在环境条件下,极为困难。在此,我们对来自产氢嗜热羧菌(ChCODH2)的CODH2进行了改造,在氧气入口和活性位点附近进行双重阻断,有效封闭通道以抵御大气中的氧气水平(20%)。经氧气通道工程改造的A559W/V610H变体在空气稳定性方面有显著改善,半衰期为24.6小时,而野生型仅为2.4小时。该空气稳定变体在暴露24小时后的晶体学快照显示,强化的FeS和NiFeS簇具有强大的完整性。此外,电酶反应证实了其即使在普遍存在的空气中也具有一氧化碳/二氧化碳转化能力。这些发现解决了由氧气诱导的金属簇坍塌导致的厌氧酶的氧气敏感性问题,增强了它们在富氧环境中进行生物一氧化碳/二氧化碳转化的潜力,从而拓宽了它们的工业可行性和适用性。
相似文献
Nat Chem Biol. 2025-1-29
Cochrane Database Syst Rev. 2025-2-19
J Biol Inorg Chem. 2025-8
Methods Mol Biol. 2019
本文引用的文献
Nat Commun. 2024-10-21
Proc Natl Acad Sci U S A. 2024-10-8
Nucleic Acids Res. 2024-7-5
Bioresour Technol. 2024-2
ChemSusChem. 2024-2-8
Angew Chem Int Ed Engl. 2023-8-7
Nat Rev Microbiol. 2021-12