Sorici Alexandru, Băjenaru Lidia, Mocanu Irina Georgiana, Florea Adina Magda, Tsakanikas Panagiotis, Ribigan Athena Cristina, Pedullà Ludovico, Bougea Anastasia
AI-MAS Laboratory, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania.
Institute of Communication and Computer Systems, National Technical University of Athens, 10682 Athens, Greece.
Healthcare (Basel). 2023 Sep 29;11(19):2656. doi: 10.3390/healthcare11192656.
(1) Objective: We explore the predictive power of a novel stream of patient data, combining wearable devices and patient reported outcomes (PROs), using an AI-first approach to classify the health status of Parkinson's disease (PD), multiple sclerosis (MS) and stroke patients (collectively named PMSS). (2) Background: Recent studies acknowledge the burden of neurological disorders on patients and on the healthcare systems managing them. To address this, effort is invested in the digital transformation of health provisioning for PMSS patients. (3) Methods: We introduce the data collection journey within the ALAMEDA project, which continuously collects PRO data for a year through mobile applications and supplements them with data from minimally intrusive wearable devices (accelerometer bracelet, IMU sensor belt, ground force measuring insoles, and sleep mattress) worn for 1-2 weeks at each milestone. We present the data collection schedule and its feasibility, the mapping of medical predictor variables to wearable device capabilities and mobile application functionality. (4) Results: A novel combination of wearable devices and smartphone applications required for the desired analysis of motor, sleep, emotional and quality-of-life outcomes is introduced. AI-first analysis methods are presented that aim to uncover the prediction capability of diverse longitudinal and cross-sectional setups (in terms of standard medical test targets). Mobile application development and usage schedule facilitates the retention of patient engagement and compliance with the study protocol.
(1) 目的:我们采用以人工智能为先的方法,探索结合可穿戴设备和患者报告结局(PROs)的新型患者数据流对帕金森病(PD)、多发性硬化症(MS)和中风患者(统称为PMSS)健康状况进行分类的预测能力。(2) 背景:最近的研究认识到神经系统疾病给患者及其管理医疗系统带来的负担。为解决这一问题,人们致力于为PMSS患者的医疗服务进行数字化转型。(3) 方法:我们介绍了ALAMEDA项目中的数据收集过程,该项目通过移动应用程序持续一年收集PRO数据,并在每个里程碑为其补充佩戴1至2周的微创可穿戴设备(加速度计手环、惯性测量单元传感器腰带、地面力测量鞋垫和睡眠床垫)的数据。我们展示了数据收集计划及其可行性、医学预测变量与可穿戴设备功能及移动应用程序功能的映射关系。(4) 结果:介绍了对运动、睡眠、情绪和生活质量结局进行所需分析所需的可穿戴设备和智能手机应用程序的新型组合。展示了旨在揭示不同纵向和横断面设置(根据标准医学测试目标)预测能力的以人工智能为先的分析方法。移动应用程序的开发和使用计划有助于保持患者参与度并遵守研究方案。