Suppr超能文献

共同决策以改善中风疾病成年患者的健康相关结局。

Shared Decision-Making to Improve Health-Related Outcomes for Adults with Stroke Disease.

作者信息

Bajenaru Lidia, Sorici Alexandru, Mocanu Irina Georgiana, Florea Adina Magda, Antochi Florina Anca, Ribigan Athena Cristina

机构信息

Department of Computer Science, Faculty of Automatic Control and Computers, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania.

Department of Neurology, University Emergency Hospital Bucharest, 169 Splaiul Independentei, 050098 Bucharest, Romania.

出版信息

Healthcare (Basel). 2023 Jun 19;11(12):1803. doi: 10.3390/healthcare11121803.

Abstract

Stroke is one of the leading causes of disability and death worldwide, a severe medical condition for which new solutions for prevention, monitoring, and adequate treatment are needed. This paper proposes a SDM framework for the development of innovative and effective solutions based on artificial intelligence in the rehabilitation of stroke patients by empowering patients to make decisions about the use of devices and applications developed in the European project ALAMEDA. To develop a predictive tool for improving disability in stroke patients, key aspects of stroke patient data collection journeys, monitored health parameters, and specific variables covering motor, physical, emotional, cognitive, and sleep status are presented. The proposed SDM model involved the training and consultation of patients, medical staff, carers, and representatives under the name of the Local Community Group. Consultation with LCG members, consists of 11 representative people, physicians, nurses, patients and caregivers, which led to the definition of a methodological framework to investigate the key aspects of monitoring the patient data collection journey for the stroke pilot, and a specific questionnaire to collect stroke patient requirements and preferences. A set of general and specific guidelines specifying the principles by which patients decide to use wearable sensing devices and specific applications resulted from the analysis of the data collected using the questionnaire. The preferences and recommendations collected from LCG members have already been implemented in this stage of ALAMEDA system design and development.

摘要

中风是全球残疾和死亡的主要原因之一,是一种严重的疾病,需要新的预防、监测和适当治疗方案。本文提出了一个共享决策(SDM)框架,旨在通过让患者对欧洲项目ALAMEDA中开发的设备和应用的使用做出决策,来开发基于人工智能的创新有效解决方案,用于中风患者的康复。为了开发一种改善中风患者残疾状况的预测工具,本文介绍了中风患者数据收集过程的关键方面、监测的健康参数以及涵盖运动、身体、情感、认知和睡眠状况的特定变量。所提出的共享决策模型涉及对患者、医务人员、护理人员以及以当地社区小组名义的代表进行培训和咨询。与由11名代表人物、医生、护士、患者和护理人员组成的当地社区小组(LCG)成员进行的咨询,促成了一个方法框架的定义,用于调查中风试点患者数据收集过程监测的关键方面,以及一份收集中风患者需求和偏好的特定问卷。通过对使用问卷收集的数据进行分析,得出了一套通用和特定的指南,明确了患者决定使用可穿戴传感设备和特定应用的原则。从当地社区小组(LCG)成员收集到的偏好和建议已经在ALAMEDA系统设计和开发的这个阶段得到了实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80dd/10298730/209a4bcfacbb/healthcare-11-01803-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验