Suppr超能文献

交流观点:应对分享定性研究数据的挑战

Exchanging words: Engaging the challenges of sharing qualitative research data.

作者信息

DuBois James M, Mozersky Jessica, Parsons Meredith, Walsh Heidi A, Friedrich Annie, Pienta Amy

机构信息

Bioethics Research Center, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.

ICPSR, Institute for Social Research, University of Michigan, Ann Arbor, MI 48106.

出版信息

Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2206981120. doi: 10.1073/pnas.2206981120. Epub 2023 Oct 13.

Abstract

In January 2023, a new NIH policy on data sharing went into effect. The policy applies to both quantitative and qualitative research (QR) data such as data from interviews or focus groups. QR data are often sensitive and difficult to deidentify, and thus have rarely been shared in the United States. Over the past 5 y, our research team has engaged stakeholders on QR data sharing, developed software to support data deidentification, produced guidance, and collaborated with the ICPSR data repository to pilot the deposit of 30 QR datasets. In this perspective article, we share important lessons learned by addressing eight clusters of questions on issues such as where, when, and what to share; how to deidentify data and support high-quality secondary use; budgeting for data sharing; and the permissions needed to share data. We also offer a brief assessment of the state of preparedness of data repositories, QR journals, and QR textbooks to support data sharing. While QR data sharing could yield important benefits to the research community, we quickly need to develop enforceable standards, expertise, and resources to support responsible QR data sharing. Absent these resources, we risk violating participant confidentiality and wasting a significant amount of time and funding on data that are not useful for either secondary use or data transparency and verification.

摘要

2023年1月,美国国立卫生研究院(NIH)一项关于数据共享的新政策生效。该政策适用于定量和定性研究(QR)数据,如访谈或焦点小组的数据。QR数据通常很敏感,难以去识别化,因此在美国很少被共享。在过去5年里,我们的研究团队与利益相关者就QR数据共享进行了接触,开发了支持数据去识别化的软件,制定了指南,并与校际政治与社会研究联盟(ICPSR)数据存储库合作,试点存入了30个QR数据集。在这篇观点文章中,我们分享了通过解决八个问题组所学到的重要经验教训,这些问题组涉及诸如在哪里、何时以及分享什么;如何对数据进行去识别化并支持高质量的二次使用;数据共享的预算;以及共享数据所需的权限等问题。我们还简要评估了数据存储库、QR期刊和QR教科书在支持数据共享方面的准备情况。虽然QR数据共享可能会给研究界带来重要益处,但我们迫切需要制定可执行的标准、专业知识和资源,以支持负责任的QR数据共享。如果缺乏这些资源,我们就有可能侵犯参与者的隐私,并在对二次使用或数据透明度及验证均无用处的数据上浪费大量时间和资金。

相似文献

1
Exchanging words: Engaging the challenges of sharing qualitative research data.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2206981120. doi: 10.1073/pnas.2206981120. Epub 2023 Oct 13.
3
Barriers and facilitators to qualitative data sharing in the United States: A survey of qualitative researchers.
PLoS One. 2021 Dec 31;16(12):e0261719. doi: 10.1371/journal.pone.0261719. eCollection 2021.
4
The project data sphere initiative: accelerating cancer research by sharing data.
Oncologist. 2015 May;20(5):464-e20. doi: 10.1634/theoncologist.2014-0431. Epub 2015 Apr 15.
7
Data sharing in the context of community-engaged research partnerships.
Soc Sci Med. 2023 May;325:115895. doi: 10.1016/j.socscimed.2023.115895. Epub 2023 Apr 11.
8
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

1
Developing a Data Note reporting guideline for qualitative health and social care research datasets (the DeNOTE study): A study protocol.
Health Psychol Behav Med. 2025 Jul 21;13(1):2532792. doi: 10.1080/21642850.2025.2532792. eCollection 2025.
3
Mixed Methods Studies Using Secondary Analysis in Nursing and Midwifery: A Methodological Review.
J Adv Nurs. 2025 May;81(5):2316-2332. doi: 10.1111/jan.16557. Epub 2024 Nov 18.
4
The refined Pathways to Cures Research Roadmap for multiple sclerosis cures.
Mult Scler. 2024 Sep;30(10):1242-1251. doi: 10.1177/13524585241266483. Epub 2024 Aug 30.
5
Lessons Learned Establishing the Palliative Care Research Cooperative's Qualitative Data Repository.
J Pain Symptom Manage. 2024 Sep;68(3):308-318. doi: 10.1016/j.jpainsymman.2024.05.027. Epub 2024 May 31.

本文引用的文献

2
Sharing Begins at Home: How Continuous and Ubiquitous FAIRness Can Enhance Research Productivity and Data Reuse.
Harv Data Sci Rev. 2022 Summer;4(3). doi: 10.1162/99608f92.44d21b86. Epub 2022 Jul 28.
3
Barriers and facilitators to qualitative data sharing in the United States: A survey of qualitative researchers.
PLoS One. 2021 Dec 31;16(12):e0261719. doi: 10.1371/journal.pone.0261719. eCollection 2021.
4
Qualitative Data Sharing: Participant Understanding, Motivation, and Consent.
Qual Health Res. 2022 Jan;32(1):182-191. doi: 10.1177/10497323211054058. Epub 2021 Dec 1.
6
Research Participant Views regarding Qualitative Data Sharing.
Ethics Hum Res. 2020 Mar;42(2):13-27. doi: 10.1002/eahr.500044.
7
Journal data policies: Exploring how the understanding of editors and authors corresponds to the policies themselves.
PLoS One. 2020 Mar 25;15(3):e0230281. doi: 10.1371/journal.pone.0230281. eCollection 2020.
10
Ethical principles for promoting health research data sharing with sub-Saharan Africa.
Dev World Bioeth. 2020 Jun;20(2):86-95. doi: 10.1111/dewb.12233. Epub 2019 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验