Suppr超能文献

如何检查模拟研究。

How to check a simulation study.

机构信息

MRC Clinical Trials Unit at UCL, London, UK.

出版信息

Int J Epidemiol. 2024 Feb 1;53(1). doi: 10.1093/ije/dyad134.

Abstract

Simulation studies are powerful tools in epidemiology and biostatistics, but they can be hard to conduct successfully. Sometimes unexpected results are obtained. We offer advice on how to check a simulation study when this occurs, and how to design and conduct the study to give results that are easier to check. Simulation studies should be designed to include some settings in which answers are already known. They should be coded in stages, with data-generating mechanisms checked before simulated data are analysed. Results should be explored carefully, with scatterplots of standard error estimates against point estimates surprisingly powerful tools. Failed estimation and outlying estimates should be identified and dealt with by changing data-generating mechanisms or coding realistic hybrid analysis procedures. Finally, we give a series of ideas that have been useful to us in the past for checking unexpected results. Following our advice may help to prevent errors and to improve the quality of published simulation studies.

摘要

模拟研究是流行病学和生物统计学中强有力的工具,但它们可能很难成功实施。有时会得到意想不到的结果。当这种情况发生时,我们提供了有关如何检查模拟研究以及如何设计和进行研究以获得更容易检查的结果的建议。模拟研究应设计为包括一些已经知道答案的设置。它们应该分阶段编码,在分析模拟数据之前检查数据生成机制。结果应该仔细探索,标准误差估计值与点估计值的散点图是非常有用的工具。应该通过更改数据生成机制或编写现实的混合分析程序来识别和处理失败的估计值和异常估计值。最后,我们提供了一系列过去对我们检查意外结果有用的想法。遵循我们的建议可以帮助防止错误并提高已发表的模拟研究的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc7c/10859132/37ed78d1a6ce/dyad134f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验