Suppr超能文献

监督深度学习架构在构建匹配倾向评分模型方面是否优于自动编码器?

Can supervised deep learning architecture outperform autoencoders in building propensity score models for matching?

机构信息

School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, BC, V6T 1Z3, Canada.

Centre for Advancing Health Outcomes, 588 - 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.

出版信息

BMC Med Res Methodol. 2024 Aug 2;24(1):167. doi: 10.1186/s12874-024-02284-5.

Abstract

PURPOSE

Propensity score matching is vital in epidemiological studies using observational data, yet its estimates relies on correct model-specification. This study assesses supervised deep learning models and unsupervised autoencoders for propensity score estimation, comparing them with traditional methods for bias and variance accuracy in treatment effect estimations.

METHODS

Utilizing a plasmode simulation based on the Right Heart Catheterization dataset, under a variety of settings, we evaluated (1) a supervised deep learning architecture and (2) an unsupervised autoencoder, alongside two traditional methods: logistic regression and a spline-based method in estimating propensity scores for matching. Performance metrics included bias, standard errors, and coverage probability. The analysis was also extended to real-world data, with estimates compared to those obtained via a double robust approach.

RESULTS

The analysis revealed that supervised deep learning models outperformed unsupervised autoencoders in variance estimation while maintaining comparable levels of bias. These results were supported by analyses of real-world data, where the supervised model's estimates closely matched those derived from conventional methods. Additionally, deep learning models performed well compared to traditional methods in settings where exposure was rare.

CONCLUSION

Supervised deep learning models hold promise in refining propensity score estimations in epidemiological research, offering nuanced confounder adjustment, especially in complex datasets. We endorse integrating supervised deep learning into epidemiological research and share reproducible codes for widespread use and methodological transparency.

摘要

目的

在使用观察性数据的流行病学研究中,倾向评分匹配至关重要,但它的估计依赖于正确的模型规格。本研究评估了监督深度学习模型和无监督自动编码器的倾向评分估计,比较了它们在治疗效果估计中的偏差和方差准确性方面与传统方法的差异。

方法

利用基于等离子体模拟的右心导管数据集,在各种设置下,我们评估了(1)监督深度学习架构和(2)无监督自动编码器,以及两种传统方法:逻辑回归和基于样条的方法,用于匹配估计倾向评分。性能指标包括偏差、标准误差和覆盖概率。该分析还扩展到真实世界的数据,将估计值与通过双重稳健方法获得的估计值进行比较。

结果

分析表明,在方差估计方面,监督深度学习模型优于无监督自动编码器,同时保持了可比的偏差水平。这些结果得到了真实世界数据的分析支持,其中监督模型的估计值与传统方法得出的估计值非常接近。此外,在暴露罕见的情况下,深度学习模型与传统方法相比表现良好。

结论

监督深度学习模型有望改进流行病学研究中的倾向评分估计,提供细致的混杂因素调整,特别是在复杂数据集。我们支持将监督深度学习纳入流行病学研究,并分享可重复使用的代码,以实现广泛使用和方法学透明度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eff7/11295454/549e204ac58c/12874_2024_2284_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验