Suppr超能文献

构建人工耳蜗植入效果模型

Evolving a Model for Cochlear Implant Outcome.

作者信息

Hoppe Ulrich, Hast Anne, Hornung Joachim, Hocke Thomas

机构信息

Cochlear Implant Center CICERO, Department of Otorhinolaryngology-Head and Neck Surgery, Uniklinikum Erlangen, Waldstr. 1, D-91054 Erlangen, Germany.

Cochlear Deutschland GmbH & Co. KG, Mailänder Str. 4a, D-30539 Hannover, Germany.

出版信息

J Clin Med. 2023 Sep 26;12(19):6215. doi: 10.3390/jcm12196215.

Abstract

BACKGROUND

Cochlear implantation is an efficient treatment for postlingually deafened adults who do not benefit sufficiently from acoustic amplification. Implantation is indicated when it can be foreseen that speech recognition with a cochlear implant (CI) is superior to that with a hearing aid. Especially for subjects with residual speech recognition, it is desirable to predict CI outcome on the basis of preoperative audiological tests.

PURPOSE

The purpose of the study was to extend and refine a previously developed model for CI outcome prediction for subjects with preoperative word recognition to include subjects with no residual hearing by incorporating additional results of routine examinations.

RESULTS

By introducing the duration of unaided hearing loss (DuHL), the median absolute error (MAE) of the prediction was reduced. While for subjects with preoperative speech recognition, the model modification did not change the MAE, for subjects with no residual speech recognition before surgery, the MAE decreased from 23.7% with the previous model to 17.2% with the extended model.

CONCLUSIONS

Prediction of word recognition with CI is possible within clinically relevant limits. Outcome prediction is particularly important for preoperative counseling and in CI aftercare to support systematic monitoring of CI fitting.

摘要

背景

人工耳蜗植入是对语后聋成年人的一种有效治疗方法,这些成年人无法从声学放大中充分获益。当可以预见人工耳蜗(CI)的言语识别优于助听器时,就可以进行植入。特别是对于有残余言语识别能力的受试者,期望根据术前听力学测试来预测人工耳蜗植入的结果。

目的

本研究的目的是扩展和完善先前开发的用于预测术前单词识别受试者人工耳蜗植入结果的模型,通过纳入常规检查的其他结果,将无残余听力的受试者纳入其中。

结果

通过引入未助听听力损失的持续时间(DuHL),预测的中位数绝对误差(MAE)降低。对于术前有言语识别能力的受试者,模型修改并未改变MAE;而对于术前无残余言语识别能力的受试者,MAE从前一个模型的23.7%降至扩展模型的17.2%。

结论

在临床相关范围内,可以预测人工耳蜗的单词识别情况。结果预测对于术前咨询和人工耳蜗术后护理尤为重要,以支持对人工耳蜗适配的系统监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6b/10573840/44349c936013/jcm-12-06215-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验