Suppr超能文献

一种基于改进YOLOv5s的森林野生动物检测算法

A Forest Wildlife Detection Algorithm Based on Improved YOLOv5s.

作者信息

Yang Wenhan, Liu Tianyu, Jiang Ping, Qi Aolin, Deng Lexing, Liu Zelong, He Yuchen

机构信息

College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China.

出版信息

Animals (Basel). 2023 Oct 7;13(19):3134. doi: 10.3390/ani13193134.

Abstract

A forest wildlife detection algorithm based on an improved YOLOv5s network model is proposed to advance forest wildlife monitoring and improve detection accuracy in complex forest environments. This research utilizes a data set from the Hunan Hupingshan National Nature Reserve in China, to which data augmentation and expansion methods are applied to extensively train the proposed model. To enhance the feature extraction ability of the proposed model, a weighted channel stitching method based on channel attention is introduced. The Swin Transformer module is combined with a CNN network to add a Self-Attention mechanism, thus improving the perceptual field for feature extraction. Furthermore, a new loss function () and an adaptive class suppression loss () are adopted to accelerate the model's convergence speed, reduce false detections in confusing categories, and increase its accuracy. When comparing our improved algorithm with the original YOLOv5s network model under the same experimental conditions and data set, significant improvements are observed, in particular, the mean average precision () is increased from 72.6% to 89.4%, comprising an accuracy improvement of 16.8%. Our improved algorithm also outperforms popular target detection algorithms, including YOLOv5s, YOLOv3, RetinaNet, and Faster-RCNN. Our proposed improvement measures can well address the challenges posed by the low contrast between background and targets, as well as occlusion and overlap, in forest wildlife images captured by trap cameras. These measures provide practical solutions for enhanced forest wildlife protection and facilitate efficient data acquisition.

摘要

提出了一种基于改进YOLOv5s网络模型的森林野生动物检测算法,以推进森林野生动物监测并提高在复杂森林环境中的检测精度。本研究利用中国湖南壶瓶山国家级自然保护区的数据集,并应用数据增强和扩充方法对所提出的模型进行广泛训练。为了增强所提出模型的特征提取能力,引入了一种基于通道注意力的加权通道拼接方法。将Swin Transformer模块与CNN网络相结合,添加自注意力机制,从而提高特征提取的感知野。此外,采用了一种新的损失函数()和自适应类别抑制损失()来加快模型的收敛速度,减少混淆类别中的误检,并提高其准确率。在相同实验条件和数据集下,将我们改进的算法与原始YOLOv5s网络模型进行比较时,观察到了显著的改进,特别是平均精度均值()从72.6%提高到了89.4%,准确率提高了%。我们改进的算法也优于流行的目标检测算法,包括YOLOv5s、YOLOv3、RetinaNet和Faster-RCNN。我们提出的改进措施能够很好地应对由陷阱相机拍摄的森林野生动物图像中背景与目标之间的低对比度以及遮挡和重叠所带来的挑战。这些措施为加强森林野生动物保护提供了切实可行的解决方案,并有助于高效的数据采集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c0/10571878/6b8b2f5a2bb8/animals-13-03134-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验