Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, P. R. China.
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
Adv Sci (Weinh). 2023 Jul;10(19):e2300797. doi: 10.1002/advs.202300797. Epub 2023 Apr 21.
The photocatalytic transformation of carbon dioxide (CO ) into carbon-based fuels or chemicals using sustainable solar energy is considered an ideal strategy for simultaneously alleviating the energy shortage and environmental crises. However, owing to the low energy utilization of sunlight and inferior catalytic activity, the conversion efficiency of CO photoreduction is far from satisfactory. In this study, a MOF-derived hollow bimetallic oxide nanomaterial is prepared for the efficient photoreduction of CO . First, a unique ZIF-67-on-InOF-1 heterostructure is successfully obtained by growing a secondary Co-based ZIF-67 onto the initial InOF-1 nanorods. The corresponding hollow counterpart has a larger specific surface area after acid etching, and the oxidized bimetallic H-Co O /In O material exhibits abundant heterogeneous interfaces that expose more active sites. The energy band structure of H-Co O /In O corresponds well with the photosensitizer of [Ru(bpy) ]Cl , which results in a high CO yield of 4828 ± 570 µmol h g and stable activity over a consecutive of six runs, demonstrating adequate photocatalytic performance. This study demonstrates that the rational design of MOF-on-MOF heterostructures can completely exploit the synergistic effects between different components, which may be extended to other MOF-derived nanomaterials as promising catalysts for practical energy conversion and storage.
利用可持续的太阳能将二氧化碳(CO )光催化转化为碳基燃料或化学品被认为是同时缓解能源短缺和环境危机的理想策略。然而,由于太阳光能的利用率低和催化活性差,CO 光还原的转化效率远不能令人满意。在本研究中,制备了一种 MOF 衍生的中空双金属氧化物纳米材料,用于高效光还原 CO 。首先,通过在初始 InOF-1 纳米棒上生长二次 Co 基 ZIF-67,成功获得了独特的 ZIF-67-on-InOF-1 异质结构。酸刻蚀后,相应的中空对应物具有更大的比表面积,氧化的双金属 H-Co O /In O 材料具有丰富的异质界面,暴露更多的活性位点。H-Co O /In O 的能带结构与光催化剂 [Ru(bpy) ]Cl 很好地匹配,导致 CO 的产率高达 4828 ± 570 µmol h g ,并且在连续六次运行中表现出稳定的活性,展示出充足的光催化性能。本研究表明,MOF-on-MOF 异质结构的合理设计可以充分利用不同组分之间的协同效应,这可能会扩展到其他 MOF 衍生的纳米材料,作为用于实际能量转换和存储的有前途的催化剂。