Suppr超能文献

通过计算机断层扫描自动分割技术分析中风和创伤性脑损伤中脑出血的放射学特征。

Radiological features of brain hemorrhage through automated segmentation from computed tomography in stroke and traumatic brain injury.

作者信息

MacIntosh Bradley J, Liu Qinghui, Schellhorn Till, Beyer Mona K, Groote Inge Rasmus, Morberg Pål C, Poulin Joshua M, Selseth Maiken N, Bakke Ragnhild C, Naqvi Aina, Hillal Amir, Ullberg Teresa, Wassélius Johan, Rønning Ole M, Selnes Per, Kristoffersen Espen S, Emblem Kyrre Eeg, Skogen Karoline, Sandset Else C, Bjørnerud Atle

机构信息

Computational Radiology & Artificial Intelligence Unit, Department of Physics and Computational Radiology, Clinic for Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.

Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

出版信息

Front Neurol. 2023 Sep 28;14:1244672. doi: 10.3389/fneur.2023.1244672. eCollection 2023.

Abstract

INTRODUCTION

Radiological assessment is necessary to diagnose spontaneous intracerebral hemorrhage (ICH) and traumatic brain injury intracranial hemorrhage (TBI-bleed). Artificial intelligence (AI) deep learning tools provide a means for decision support. This study evaluates the hemorrhage segmentations produced from three-dimensional deep learning AI model that was developed using non-contrast computed tomography (CT) imaging data external to the current study.

METHODS

Non-contrast CT imaging data from 1263 patients were accessed across seven data sources (referred to as sites) in Norway and Sweden. Patients were included based on ICH, TBI-bleed, or mild TBI diagnosis. Initial non-contrast CT images were available for all participants. Hemorrhage location frequency maps were generated. The number of estimated haematoma clusters was correlated with the total haematoma volume. Ground truth expert annotations were available for one ICH site; hence, a comparison was made with the estimated haematoma volumes. Segmentation volume estimates were used in a receiver operator characteristics (ROC) analysis for all samples (i.e., bleed detected) and then specifically for one site with few TBI-bleed cases.

RESULTS

The hemorrhage frequency maps showed spatial patterns of estimated lesions consistent with ICH or TBI-bleed presentations. There was a positive correlation between the estimated number of clusters and total haematoma volume for each site (correlation range: 0.45-0.74; each -value < 0.01) and evidence of ICH between-site differences. Relative to hand-drawn annotations for one ICH site, the VIOLA-AI segmentation mask achieved a median Dice Similarity Coefficient of 0.82 (interquartile range: 0.78 and 0.83), resulting in a small overestimate in the haematoma volume by a median of 0.47 mL (interquartile range: 0.04 and 1.75 mL). The bleed detection ROC analysis for the whole sample gave a high area-under-the-curve (AUC) of 0.92 (with sensitivity and specificity of 83.28% and 95.41%); however, when considering only the mild head injury site, the TBI-bleed detection gave an AUC of 0.70.

DISCUSSION

An open-source segmentation tool was used to visualize hemorrhage locations across multiple data sources and revealed quantitative hemorrhage site differences. The automated total hemorrhage volume estimate correlated with a per-participant hemorrhage cluster count. ROC results were moderate-to-high. The VIOLA-AI tool had promising results and might be useful for various types of intracranial hemorrhage.

摘要

引言

放射学评估对于诊断自发性脑出血(ICH)和创伤性脑损伤颅内出血(TBI-bleed)是必要的。人工智能(AI)深度学习工具提供了一种决策支持手段。本研究评估了使用本研究外部的非增强计算机断层扫描(CT)成像数据开发的三维深度学习AI模型产生的出血分割结果。

方法

从挪威和瑞典的七个数据源(称为站点)获取了1263例患者的非增强CT成像数据。根据ICH、TBI-bleed或轻度TBI诊断纳入患者。所有参与者均有初始非增强CT图像。生成了出血位置频率图。估计的血肿簇数量与总血肿体积相关。有一个ICH站点可获得地面真值专家注释;因此,将其与估计的血肿体积进行了比较。分割体积估计用于所有样本(即检测到出血)的受试者工作特征(ROC)分析,然后专门针对一个TBI-bleed病例较少的站点进行分析。

结果

出血频率图显示了与ICH或TBI-bleed表现一致的估计病变的空间模式。每个站点估计的簇数量与总血肿体积之间存在正相关(相关范围:0.45-0.74;每个p值<0.01),并且有ICH站点间差异的证据。相对于一个ICH站点的手绘注释,VIOLA-AI分割掩码的中位骰子相似系数为0.82(四分位间距:0.78和0.83),导致血肿体积中位数高估0.47 mL(四分位间距:0.04和1.75 mL)。整个样本的出血检测ROC分析给出了较高的曲线下面积(AUC)为0.92(敏感性和特异性分别为83.28%和95.41%);然而,仅考虑轻度头部损伤站点时,TBI-bleed检测的AUC为0.70。

讨论

使用了一个开源分割工具来可视化多个数据源的出血位置,并揭示了出血部位的定量差异。自动总出血量估计与每个参与者的出血簇计数相关。ROC结果为中到高。VIOLA-AI工具取得了有前景的结果,可能对各种类型的颅内出血有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验