Suppr超能文献

非对比 CT 自动测量脑出血量的准确性:一项瑞典卒中登记队列研究。

Accuracy of automated intracerebral hemorrhage volume measurement on non-contrast computed tomography: a Swedish Stroke Register cohort study.

机构信息

Medical Imaging and Physiology, Skåne University Hospital, 221 85, Lund, Sweden.

Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden.

出版信息

Neuroradiology. 2023 Mar;65(3):479-488. doi: 10.1007/s00234-022-03075-9. Epub 2022 Nov 3.

Abstract

PURPOSE

Hematoma volume is the strongest predictor of patient outcome after intracerebral hemorrhage (ICH). The aim of this study was to validate novel fully automated software for quantification of ICH volume on non-contrast computed tomography (CT).

METHODS

The population was defined from the Swedish Stroke Register (RS) and included all patients with an ICH diagnosis during 2016-2019 in Region Skåne. Hemorrhage volume on their initial head CT was measured using ABC/2 and manual segmentation (Sectra IDS7 volume measurement tool) and the automated volume quantification tool (qER-NCCT) by Qure.ai. The first 500 were examined by two independent readers.

RESULTS

A total of 1649 ICH patients were included. The qER-NCCT had 97% sensitivity in identifying ICH. In total, there was excellent agreement between volumetric measurements of ICH volumes by qER-NCCT and manual segmentation by interclass correlation (ICC = 0.96), and good agreement (ICC = 0.86) between qER-NCCT and ABC/2 method. The qER-NCCT showed volume underestimation, mainly in large (> 30 ml) heterogenous hemorrhages. Interrater agreement by (ICC) was 0.996 (95% CI: 0.99-1.00) for manual segmentation.

CONCLUSION

Our study showed excellent agreement in volume quantification between the fully automated software qER-NCCT and manual segmentation of ICH on NCCT. The qER-NCCT would be an important additive tool by aiding in early diagnostics and prognostication for patients with ICH and in provide volumetry on a population-wide level. Further refinement of the software should address the underestimation of ICH volume seen in a portion of large, heterogenous, irregularly shaped ICHs.

摘要

目的

血肿体积是预测脑出血(ICH)患者预后的最强指标。本研究旨在验证一种新型的全自动软件,用于对非对比 CT(NCCT)上的 ICH 体积进行定量分析。

方法

该人群来自瑞典中风登记处(RS),包括 2016-2019 年在斯科讷地区诊断为 ICH 的所有患者。使用 ABC/2 和手动分割(Sectra IDS7 体积测量工具)以及 Qure.ai 的自动体积量化工具(qER-NCCT)测量其初始头部 CT 上的出血体积。前 500 例由两名独立的读者进行检查。

结果

共纳入 1649 例 ICH 患者。qER-NCCT 对识别 ICH 的敏感性为 97%。总体而言,qER-NCCT 与手动分割的 ICH 体积容积测量之间具有极好的一致性(ICC=0.96),并且与 ABC/2 方法的一致性良好(ICC=0.86)。qER-NCCT 显示出体积低估,主要是在较大(>30ml)异质性出血中。手动分割的组内相关系数(ICC)为 0.996(95%CI:0.99-1.00)。

结论

本研究表明,全自动软件 qER-NCCT 与 NCCT 上 ICH 的手动分割在体积定量方面具有极好的一致性。qER-NCCT 将是一种重要的辅助工具,有助于对 ICH 患者进行早期诊断和预后判断,并提供人群水平的体积测量。进一步改进软件应解决部分大、异质性、不规则形状的 ICH 中存在的 ICH 体积低估问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21dc/9905189/948d014b008d/234_2022_3075_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验