Suppr超能文献

一种基于物理的机器学习技术可快速重建冠状动脉中的壁面剪应力和压力场。

A physics-based machine learning technique rapidly reconstructs the wall-shear stress and pressure fields in coronary arteries.

作者信息

Morgan Benjamin, Murali Amal Roy, Preston George, Sima Yidnekachew Ayele, Marcelo Chamorro Luis Alberto, Bourantas Christos, Torii Ryo, Mathur Anthony, Baumbach Andreas, Jacob Marc C, Karabasov Sergey, Krams Rob

机构信息

Department of Science and Engineering, Queen Mary University of London, London, United Kingdom.

Laboratoire de Mécanique des Fluides et d'Acoustique UMR5509, INSA Lyon, Ecole Centrale de Lyon, University of Lyon, Ecully, France.

出版信息

Front Cardiovasc Med. 2023 Sep 29;10:1221541. doi: 10.3389/fcvm.2023.1221541. eCollection 2023.

Abstract

With the global rise of cardiovascular disease including atherosclerosis, there is a high demand for accurate diagnostic tools that can be used during a short consultation. In view of pathology, abnormal blood flow patterns have been demonstrated to be strong predictors of atherosclerotic lesion incidence, location, progression, and rupture. Prediction of patient-specific blood flow patterns can hence enable fast clinical diagnosis. However, the current state of art for the technique is by employing 3D-imaging-based Computational Fluid Dynamics (CFD). The high computational cost renders these methods impractical. In this work, we present a novel method to expedite the reconstruction of 3D pressure and shear stress fields using a combination of a reduced-order CFD modelling technique together with non-linear regression tools from the Machine Learning (ML) paradigm. Specifically, we develop a proof-of-concept automated pipeline that uses randomised perturbations of an atherosclerotic pig coronary artery to produce a large dataset of unique mesh geometries with variable blood flow. A total of 1,407 geometries were generated from seven reference arteries and were used to simulate blood flow using the CFD solver Abaqus. This CFD dataset was then post-processed using the mesh-domain common-base Proper Orthogonal Decomposition (cPOD) method to obtain Eigen functions and principal coefficients, the latter of which is a product of the individual mesh flow solutions with the POD Eigenvectors. Being a data-reduction method, the POD enables the data to be represented using only the ten most significant modes, which captures cumulatively greater than 95% of variance of flow features due to mesh variations. Next, the node coordinate data of the meshes were embedded in a two-dimensional coordinate system using the t-distributed Stochastic Neighbor Embedding (-SNE) algorithm. The reduced dataset for -SNE coordinates and corresponding vector of POD coefficients were then used to train a Random Forest Regressor (RFR) model. The same methodology was applied to both the volumetric pressure solution and the wall shear stress. The predicted pattern of blood pressure, and shear stress in unseen arterial geometries were compared with the ground truth CFD solutions on "unseen" meshes. The new method was able to reliably reproduce the 3D coronary artery haemodynamics in less than 10 s.

摘要

随着包括动脉粥样硬化在内的心血管疾病在全球范围内的增加,对于能够在短时间会诊中使用的准确诊断工具的需求很高。从病理学角度来看,异常血流模式已被证明是动脉粥样硬化病变发生率、位置、进展和破裂的有力预测指标。因此,预测特定患者的血流模式能够实现快速临床诊断。然而,该技术的当前技术水平是采用基于3D成像的计算流体动力学(CFD)。高计算成本使得这些方法不切实际。在这项工作中,我们提出了一种新颖的方法,使用降阶CFD建模技术与机器学习(ML)范式中的非线性回归工具相结合,来加速3D压力和剪应力场的重建。具体而言,我们开发了一个概念验证自动化管道,该管道使用动脉粥样硬化猪冠状动脉的随机扰动来生成具有可变血流的大量独特网格几何数据集。从七条参考动脉生成了总共1407个几何形状,并使用CFD求解器Abaqus来模拟血流。然后使用网格域公共基正交分解(cPOD)方法对该CFD数据集进行后处理,以获得特征函数和主系数,后者是各个网格流解与POD特征向量的乘积。作为一种数据缩减方法,POD能够仅使用十个最重要的模式来表示数据,这些模式累计捕获了由于网格变化而导致的流特征方差的95%以上。接下来,使用t分布随机邻域嵌入(-SNE)算法将网格的节点坐标数据嵌入二维坐标系中。然后,使用-SNE坐标的缩减数据集和相应的POD系数向量来训练随机森林回归器(RFR)模型。相同的方法应用于体积压力解和壁面剪应力。将在未见动脉几何形状中预测的血压和剪应力模式与“未见”网格上的地面真值CFD解进行比较。新方法能够在不到10秒的时间内可靠地再现3D冠状动脉血流动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9e4/10570504/fbcd75710e35/fcvm-10-1221541-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验