Reynaud Adrien, Trzpil Wioletta, Dartiguelongue Louis, Çumaku Vaitson, Fortin Thomas, Sansa Marc, Hentz Sebastien, Masselon Christophe
Université Grenoble Alpes, CEA-Leti, Grenoble, France.
Université Grenoble Alpes, CEA, Institut de Recherche Interdisciplinaire de Grenoble, Grenoble, France.
Front Chem. 2023 Sep 7;11:1238674. doi: 10.3389/fchem.2023.1238674. eCollection 2023.
Mass measurements in the mega-to giga-Dalton range are essential for the characterization of natural and synthetic nanoparticles, but very challenging to perform using conventional mass spectrometers. Nano-electro-mechanical system (NEMS) based MS has demonstrated unique capabilities for the analysis of ultra-high mass analytes. Yet, system designs to date included constraints transferred from conventional MS instruments, such as ion guides and high vacuum requirements. Encouraged by other reports, we investigated the influence of pressure on the performances of the NEMS sensor and the aerodynamic focusing lens that equipped our first-generation instrument. We thus realized that the NEMS spectrometer could operate at significantly higher pressures than anticipated without compromising particle focusing nor mass measurement quality. Based on these observations, we designed and constructed a new NEMS-MS prototype considerably more compact than our original system, and which features an improved aerodynamic lens alignment concept, yielding superior particle focusing. We evaluated this new prototype by performing nanoparticle deposition to characterize aerodynamic focusing, and mass measurements of calibrated gold nanoparticles samples. The particle capture efficiency showed nearly two orders of magnitude improvement compared to our previous prototype, while operating at two orders of magnitude greater pressure, and without compromising mass resolution.
兆至千兆道尔顿范围内的质量测量对于天然和合成纳米颗粒的表征至关重要,但使用传统质谱仪进行此类测量极具挑战性。基于纳米机电系统(NEMS)的质谱已展现出分析超高质量分析物的独特能力。然而,迄今为止的系统设计包含了从传统质谱仪器沿袭而来的限制,诸如离子导向器和高真空要求。受其他报告的启发,我们研究了压力对NEMS传感器以及配备于我们第一代仪器的气动聚焦透镜性能的影响。由此我们认识到,NEMS光谱仪能够在比预期显著更高的压力下运行,而不会影响颗粒聚焦或质量测量质量。基于这些观察结果,我们设计并构建了一个新的NEMS - MS原型,它比我们原来的系统紧凑得多,并且具有改进的气动透镜对准概念,能实现更优的颗粒聚焦。我们通过进行纳米颗粒沉积以表征气动聚焦,并对校准后的金纳米颗粒样品进行质量测量,对这个新原型进行了评估。与我们之前的原型相比,颗粒捕获效率提高了近两个数量级,同时在高两个数量级的压力下运行,且不影响质量分辨率。