Department of Radiology, University of Washington, Seattle, WA, USA.
Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA.
Neuroinformatics. 2024 Oct;22(4):731-744. doi: 10.1007/s12021-024-09683-5. Epub 2024 Sep 11.
This study concentrates on the segmentation of intracranial aneurysms, a pivotal aspect of diagnosis and treatment planning. We aim to overcome the inherent instance imbalance and morphological variability by introducing a novel morphology and texture loss reweighting approach. Our innovative method involves the incorporation of tailored weights within the loss function of deep neural networks. Specifically designed to account for aneurysm size, shape, and texture, this approach strategically guides the model to focus on capturing discriminative information from imbalanced features. The study conducted extensive experimentation utilizing ADAM and RENJI TOF-MRA datasets to validate the proposed approach. The results of our experimentation demonstrate the remarkable effectiveness of the introduced methodology in improving aneurysm segmentation accuracy. By dynamically adapting to the variances present in aneurysm features, our model showcases promising outcomes for accurate diagnostic insights. The nuanced consideration of morphological and textural nuances within the loss function proves instrumental in overcoming the challenge posed by instance imbalance. In conclusion, our study presents a nuanced solution to the intricate challenge of intracranial aneurysm segmentation. The proposed morphology and texture loss reweighting approach, with its tailored weights and dynamic adaptability, proves to be instrumental in enhancing segmentation precision. The promising outcomes from our experimentation suggest the potential for accurate diagnostic insights and informed treatment strategies, marking a significant advancement in this critical domain of medical imaging.
本研究专注于颅内动脉瘤的分割,这是诊断和治疗计划的关键方面。我们旨在通过引入新的形态和纹理损失重新加权方法来克服固有的实例不平衡和形态可变性。我们的创新方法涉及在深度神经网络的损失函数中引入定制权重。该方法专门设计用于考虑动脉瘤的大小、形状和纹理,策略性地指导模型从不平衡特征中捕获有鉴别力的信息。研究利用 ADAM 和 RENJI TOF-MRA 数据集进行了广泛的实验,以验证所提出的方法。实验结果表明,所提出的方法在提高动脉瘤分割准确性方面具有显著的效果。通过动态适应动脉瘤特征中的差异,我们的模型展示了用于准确诊断见解的有前途的结果。在损失函数中对形态和纹理细微差别进行细致考虑对于克服实例不平衡带来的挑战非常重要。总之,我们的研究提出了一种细致的解决方案,以应对颅内动脉瘤分割这一复杂的挑战。所提出的形态和纹理损失重新加权方法,通过其定制权重和动态适应性,证明在提高分割精度方面非常有效。实验的有希望的结果表明,该方法具有用于准确诊断见解和制定治疗策略的潜力,这标志着医学成像这一关键领域的重大进展。