Suppr超能文献

一种基于深度学习的寻常型间质性肺炎放射组学分类器。

A Deep Learning-Based Radiomic Classifier for Usual Interstitial Pneumonia.

作者信息

Chung Jonathan H, Chelala Lydia, Pugashetti Janelle Vu, Wang Jennifer M, Adegunsoye Ayodeji, Matyga Alexander W, Keith Lauren, Ludwig Kai, Zafari Sahar, Ghodrati Sahand, Ghasemiesfe Ahmadreza, Guo Henry, Soo Eleanor, Lyen Stephen, Sayer Charles, Hatt Charles, Oldham Justin M

机构信息

Department of Radiology, University of Chicago, Chicago, IL.

Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI.

出版信息

Chest. 2024 Feb;165(2):371-380. doi: 10.1016/j.chest.2023.10.012. Epub 2023 Oct 14.

Abstract

BACKGROUND

Because chest CT scan has largely supplanted surgical lung biopsy for diagnosing most cases of interstitial lung disease (ILD), tools to standardize CT scan interpretation are urgently needed.

RESEARCH QUESTION

Does a deep learning (DL)-based classifier for usual interstitial pneumonia (UIP) derived using CT scan features accurately discriminate radiologist-determined visual UIP?

STUDY DESIGN AND METHODS

A retrospective cohort study was performed. Chest CT scans acquired in individuals with and without ILD were drawn from a variety of public and private data sources. Using radiologist-determined visual UIP as ground truth, a convolutional neural network was used to learn discrete CT scan features of UIP, with outputs used to predict the likelihood of UIP using a linear support vector machine. Test performance characteristics were assessed in an independent performance cohort and multicenter ILD clinical cohort. Transplant-free survival was compared between UIP classification approaches using the Kaplan-Meier estimator and Cox proportional hazards regression.

RESULTS

A total of 2,907 chest CT scans were included in the training (n = 1,934), validation (n = 408), and performance (n = 565) data sets. The prevalence of radiologist-determined visual UIP was 12.4% and 37.1% in the performance and ILD clinical cohorts, respectively. The DL-based UIP classifier predicted visual UIP in the performance cohort with sensitivity and specificity of 93% and 86%, respectively, and in the multicenter ILD clinical cohort with 81% and 77%, respectively. DL-based and visual UIP classification similarly discriminated survival, and outcomes were consistent among cases with positive DL-based UIP classification irrespective of visual classification.

INTERPRETATION

A DL-based classifier for UIP demonstrated good test performance across a wide range of UIP prevalence and similarly discriminated survival when compared with radiologist-determined UIP. This automated tool could efficiently screen for UIP in patients undergoing chest CT scan and identify a high-risk phenotype among those with known ILD.

摘要

背景

由于胸部CT扫描在很大程度上已取代外科肺活检用于诊断大多数间质性肺疾病(ILD)病例,因此迫切需要标准化CT扫描解读的工具。

研究问题

基于深度学习(DL)并利用CT扫描特征得出的普通型间质性肺炎(UIP)分类器能否准确区分放射科医生判定的可视UIP?

研究设计与方法

进行了一项回顾性队列研究。从各种公共和私人数据源中提取有ILD和无ILD个体的胸部CT扫描图像。以放射科医生判定的可视UIP作为金标准,使用卷积神经网络学习UIP的离散CT扫描特征,并将输出结果用于通过线性支持向量机预测UIP的可能性。在独立的性能队列和多中心ILD临床队列中评估测试性能特征。使用Kaplan-Meier估计器和Cox比例风险回归比较不同UIP分类方法之间的无移植生存期。

结果

训练集(n = 1,934)、验证集(n = 408)和性能评估集(n = 565)共纳入2,907例胸部CT扫描图像。在性能评估队列和ILD临床队列中,放射科医生判定的可视UIP患病率分别为12.4%和37.1%。基于DL的UIP分类器在性能评估队列中预测可视UIP的敏感性和特异性分别为93%和86%,在多中心ILD临床队列中分别为81%和77%。基于DL的UIP分类和可视UIP分类在区分生存期方面相似,并且在基于DL的UIP分类为阳性的病例中,无论可视分类如何,结果都是一致的。

解读

基于DL的UIP分类器在广泛的UIP患病率范围内均表现出良好的测试性能,与放射科医生判定的UIP相比,在区分生存期方面也相似。这种自动化工具可以有效地在接受胸部CT扫描的患者中筛查UIP,并在已知ILD的患者中识别出高危表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验