Suppr超能文献

基因型及其他常见变异与寻常型间质性肺炎的计算机成像特征相关。

Genotype and Other Common Variants Are Associated with Computational Imaging Features of Usual Interstitial Pneumonia.

作者信息

Blumhagen Rachel Z, Humphries Stephen M, Peljto Anna L, Lynch David A, Cardwell Jonathan, Bang Tami J, Teague Shawn D, Sigakis Christopher, Walts Avram D, Puthenvedu Deepa, Wolters Paul J, Blackwell Timothy S, Kropski Jonathan A, Brown Kevin K, Schwarz Marvin I, Yang Ivana V, Steele Mark P, Schwartz David A, Lee Joyce S

机构信息

Center for Genes, Environment, and Health.

Department of Radiology, and.

出版信息

Ann Am Thorac Soc. 2025 Apr;22(4):533-540. doi: 10.1513/AnnalsATS.202401-022OC.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a complex and heterogeneous disease. Given this, we reasoned that differences in genetic profiles may be associated with unique clinical and radiologic features. Computational image analysis, sometimes referred to as radiomics, provides objective, quantitative assessments of radiologic features in subjects with pulmonary fibrosis. To determine if the genetic risk profile of patients with IPF identifies unique computational imaging phenotypes. Participants with IPF were included in this study if they had genotype data and computed tomography (CT) scans of the chest available for computational image analysis. The extent of lung fibrosis and the likelihood of a usual interstitial pneumonia (UIP) pattern were scored automatically using two separate, previously validated deep learning techniques for CT analysis. UIP pattern was also classified visually by radiologists according to established criteria. Among 329 participants with IPF, and were independently associated with the deep learning-based UIP score. None of the common variants were associated with fibrosis extent by computational imaging. We did not find an association between or and visually assessed UIP pattern. Select genetic variants are associated with computer-based classification of UIP on CT in this IPF cohort. Analysis of radiologic features using deep learning may enhance our ability to identify important genotype-phenotype associations in fibrotic lung diseases.

摘要

特发性肺纤维化(IPF)是一种复杂的异质性疾病。鉴于此,我们推断基因谱的差异可能与独特的临床和放射学特征相关。计算图像分析,有时也称为放射组学,可对肺纤维化患者的放射学特征进行客观、定量评估。以确定IPF患者的遗传风险谱是否能识别出独特的计算成像表型。如果患有IPF的参与者有可用于计算图像分析的基因分型数据和胸部计算机断层扫描(CT),则将其纳入本研究。使用两种单独的、先前经过验证的深度学习技术对CT进行分析,自动对肺纤维化程度和普通间质性肺炎(UIP)模式的可能性进行评分。放射科医生也根据既定标准对UIP模式进行视觉分类。在329名IPF参与者中,[具体基因或因素]与基于深度学习的UIP评分独立相关。没有常见变异与计算成像的纤维化程度相关。我们未发现[具体基因或因素]与视觉评估的UIP模式之间存在关联。在这个IPF队列中,特定基因变异与CT上基于计算机的UIP分类相关。使用深度学习分析放射学特征可能会增强我们识别纤维化肺病中重要基因型-表型关联的能力。

相似文献

7
The relationship between complement C3 expression and the MUC5B genotype in pulmonary fibrosis.补体 C3 表达与肺纤维化中 MUC5B 基因型的关系。
Am J Physiol Lung Cell Mol Physiol. 2018 Jul 1;315(1):L1-L10. doi: 10.1152/ajplung.00395.2017. Epub 2018 Mar 22.

本文引用的文献

5
Machine learning in radiology: the new frontier in interstitial lung diseases.放射学中的机器学习:间质性肺疾病的新前沿
Lancet Digit Health. 2023 Jan;5(1):e41-e50. doi: 10.1016/S2589-7500(22)00230-8. Epub 2022 Dec 12.
9
Interobserver variability in high-resolution CT of the lungs.肺部高分辨率CT的观察者间变异性。
Eur J Radiol Open. 2020 Mar 31;7:100228. doi: 10.1016/j.ejro.2020.100228. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验