National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Queensland, Australia.
Am J Respir Crit Care Med. 2022 Oct 1;206(7):883-891. doi: 10.1164/rccm.202112-2684OC.
Reliable outcome prediction in patients with fibrotic lung disease using baseline high-resolution computed tomography (HRCT) data remains challenging. To evaluate the prognostic accuracy of a deep learning algorithm (SOFIA [Systematic Objective Fibrotic Imaging Analysis Algorithm]), trained and validated in the identification of usual interstitial pneumonia (UIP)-like features on HRCT (UIP probability), in a large cohort of well-characterized patients with progressive fibrotic lung disease drawn from a national registry. SOFIA and radiologist UIP probabilities were converted to Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED)-based UIP probability categories (UIP not included in the differential, 0-4%; low probability of UIP, 5-29%; intermediate probability of UIP, 30-69%; high probability of UIP, 70-94%; and pathognomonic for UIP, 95-100%), and their prognostic utility was assessed using Cox proportional hazards modeling. In multivariable analysis adjusting for age, sex, guideline-based radiologic diagnosis, anddisease severity (using total interstitial lung disease [ILD] extent on HRCT, percent predicted FVC, Dl, or the composite physiologic index), only SOFIA UIP probability PIOPED categories predicted survival. SOFIA-PIOPED UIP probability categories remained prognostically significant in patients considered indeterminate ( = 83) by expert radiologist consensus (hazard ratio, 1.73; < 0.0001; 95% confidence interval, 1.40-2.14). In patients undergoing surgical lung biopsy ( = 86), after adjusting for guideline-based histologic pattern and total ILD extent on HRCT, only SOFIA-PIOPED probabilities were predictive of mortality (hazard ratio, 1.75; < 0.0001; 95% confidence interval, 1.37-2.25). Deep learning-based UIP probability on HRCT provides enhanced outcome prediction in patients with progressive fibrotic lung disease when compared with expert radiologist evaluation or guideline-based histologic pattern. In principle, this tool may be useful in multidisciplinary characterization of fibrotic lung disease. The utility of this technology as a decision support system when ILD expertise is unavailable requires further investigation.
在纤维化肺部疾病患者中,使用基线高分辨率计算机断层扫描 (HRCT) 数据进行可靠的预后预测仍然具有挑战性。本研究旨在评估深度学习算法 (SOFIA [系统客观纤维化成像分析算法]) 在识别 HRCT 上特发性间质性肺炎 (UIP)-样特征方面的预后准确性,该算法是在全国登记处纳入的一组特征明确的进展性纤维化肺部疾病患者中进行训练和验证的。SOFIA 和放射科医生的 UIP 概率转换为基于前瞻性肺栓塞诊断研究 (PIOPED) 的 UIP 概率类别(UIP 不包括在鉴别诊断中,0-4%;UIP 低度可能,5-29%;UIP 中度可能,30-69%;UIP 高度可能,70-94%;和特发性 UIP,95-100%),并使用 Cox 比例风险建模评估其预后价值。在多变量分析中,调整年龄、性别、基于指南的放射学诊断和疾病严重程度(使用 HRCT 上的总间质性肺病 [ILD] 程度、预测 FVC 的百分比、Dl 或复合生理指数)后,只有 SOFIA UIP 概率 PIOPED 类别预测生存。SOFIA-PIOPED UIP 概率类别在专家放射科医生共识认为不确定的患者( = 83)中仍然具有预后意义(风险比,1.73; < 0.0001;95%置信区间,1.40-2.14)。在接受手术肺活检的患者中( = 86),在调整基于指南的组织学模式和 HRCT 上的总 ILD 程度后,只有 SOFIA-PIOPED 概率与死亡率相关(风险比,1.75; < 0.0001;95%置信区间,1.37-2.25)。基于 HRCT 的深度学习 UIP 概率与专家放射科医生评估或基于指南的组织学模式相比,可提高进展性纤维化肺部疾病患者的预后预测能力。原则上,该工具可用于纤维化肺部疾病的多学科特征描述。当缺乏ILD 专业知识时,该技术作为决策支持系统的效用还需要进一步研究。