Suppr超能文献

离子热合成磁性氮掺杂多孔碳以固定钯纳米粒子作为还原硝基芳烃化合物的高效纳米催化剂。

Ionothermal synthesis of magnetic N-doped porous carbon to immobilize Pd nanoparticles as an efficient nanocatalyst for the reduction of nitroaromatic compounds.

作者信息

Taheri Sahar, Heravi Majid M, Saljooqi Asma

机构信息

Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran.

Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.

出版信息

Sci Rep. 2023 Oct 16;13(1):17566. doi: 10.1038/s41598-023-35998-5.

Abstract

Carbon materials play important roles as catalysts or catalyst supports for reduction reactions owing to their high porosity, large specific surface area, great electron conductivity, and excellent chemical stability. In this paper, a mesoporous N-doped carbon substrate (exhibited as N-C) has been synthesized by ionothermal carbonization of glucose in the presence of histidine. The N-C substrate was modified by FeO nanoparticles (N-C/FeO), and then Pd nanoparticles were stabilized on the magnetic substrate to synthesize an eco-friendly Pd catalyst with high efficiency, magnetic, reusability, recoverability, and great stability. To characterize the Pd/FeO-N-C nanocatalyst, different microscopic and spectroscopic methods such as FT-IR, XRD, SEM/EDX, and TEM were applied. Moreover, Pd/FeO-N-C showed high catalytic activity in reducing nitroaromatic compounds in water at ambient temperatures when NaBH was used as a reducing agent. The provided nanocatalyst's great catalytic durability and power can be attributed to the synergetic interaction among well-dispersed Pd nanoparticles and N-doped carbonaceous support.

摘要

碳材料由于其高孔隙率、大比表面积、良好的电子导电性和优异的化学稳定性,在还原反应中作为催化剂或催化剂载体发挥着重要作用。在本文中,通过在组氨酸存在下对葡萄糖进行离子热碳化合成了一种介孔氮掺杂碳载体(表示为N-C)。用FeO纳米颗粒对N-C载体进行改性(N-C/FeO),然后将Pd纳米颗粒稳定在磁性载体上,以合成一种具有高效、磁性、可重复使用性、可回收性和高稳定性的环保型Pd催化剂。为了表征Pd/FeO-N-C纳米催化剂,应用了不同的微观和光谱方法,如傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、扫描电子显微镜/能谱仪(SEM/EDX)和透射电子显微镜(TEM)。此外,当使用硼氢化钠(NaBH)作为还原剂时,Pd/FeO-N-C在环境温度下对水中硝基芳烃化合物的还原反应表现出高催化活性。所提供的纳米催化剂的高催化耐久性和催化能力可归因于分散良好的Pd纳米颗粒与氮掺杂碳质载体之间的协同相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2def/10579375/aa965569d973/41598_2023_35998_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验