Suppr超能文献

伴侣蛋白分散凝聚物中孤儿核糖体蛋白的适应性保存。

Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates.

机构信息

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA.

Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA.

出版信息

Nat Cell Biol. 2023 Nov;25(11):1691-1703. doi: 10.1038/s41556-023-01253-2. Epub 2023 Oct 16.

Abstract

Ribosome biogenesis is among the most resource-intensive cellular processes, with ribosomal proteins accounting for up to half of all newly synthesized proteins in eukaryotic cells. During stress, cells shut down ribosome biogenesis in part by halting rRNA synthesis, potentially leading to massive accumulation of aggregation-prone 'orphan' ribosomal proteins (oRPs). Here we show that, during heat shock in yeast and human cells, oRPs accumulate as reversible peri-nucleolar condensates recognized by the Hsp70 co-chaperone Sis1/DnaJB6. oRP condensates are liquid-like in cell-free lysate but solidify upon depletion of Sis1 or inhibition of Hsp70. When cells recover from heat shock, oRP condensates disperse in a Sis1- and Hsp70-dependent manner, and the oRP constituents are incorporated into functional ribosomes in the cytosol, enabling cells to efficiently resume growth. Preserving biomolecules in reversible condensates-like mRNAs in cytosolic stress granules and oRPs at the nucleolar periphery-may be a primary function of the Hsp70 chaperone system.

摘要

核糖体生物发生是细胞中资源消耗最多的过程之一,核糖体蛋白占真核细胞中新合成蛋白质的一半以上。在应激条件下,细胞通过停止 rRNA 合成部分关闭核糖体生物发生,这可能导致易于聚集的“孤儿”核糖体蛋白(oRPs)大量积累。在这里,我们发现在酵母和人类细胞的热激过程中,oRPs 作为可逆的核仁周凝聚物积累,被 Hsp70 共伴侣 Sis1/DnaJB6 识别。oRP 凝聚物在无细胞溶酶体中呈液态,但在 Sis1 耗尽或 Hsp70 抑制时会凝固。当细胞从热激中恢复时,oRP 凝聚物以 Sis1 和 Hsp70 依赖的方式分散,oRP 成分被整合到细胞质中的功能性核糖体中,使细胞能够有效地恢复生长。将生物分子保存在可逆凝聚物中,如细胞质应激颗粒中的 mRNAs 和核仁周围的 oRPs,可能是 Hsp70 伴侣系统的主要功能之一。

相似文献

1
Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates.
Nat Cell Biol. 2023 Nov;25(11):1691-1703. doi: 10.1038/s41556-023-01253-2. Epub 2023 Oct 16.
2
A ribosome-anchored chaperone network that facilitates eukaryotic ribosome biogenesis.
J Cell Biol. 2010 Apr 5;189(1):69-81. doi: 10.1083/jcb.201001054.
3
The Heat Shock Response as a Condensate Cascade.
J Mol Biol. 2024 Jul 15;436(14):168642. doi: 10.1016/j.jmb.2024.168642. Epub 2024 Jun 5.
4
Chaperones directly and efficiently disperse stress-triggered biomolecular condensates.
Mol Cell. 2022 Feb 17;82(4):741-755.e11. doi: 10.1016/j.molcel.2022.01.005. Epub 2022 Feb 10.
5
7
The Hsp70 homolog Ssb affects ribosome biogenesis via the TORC1-Sch9 signaling pathway.
Nat Commun. 2017 Oct 16;8(1):937. doi: 10.1038/s41467-017-00635-z.
8
Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.
J Mol Biol. 2015 Apr 10;427(7):1632-43. doi: 10.1016/j.jmb.2015.02.007. Epub 2015 Feb 14.

引用本文的文献

4
The mechanobiology of biomolecular condensates.
Biophys Rev (Melville). 2025 Mar 25;6(1):011310. doi: 10.1063/5.0236610. eCollection 2025 Mar.
5
A nuclear protein quality control system for elimination of nucleolus-related inclusions.
EMBO J. 2025 Feb;44(3):801-823. doi: 10.1038/s44318-024-00333-9. Epub 2024 Dec 17.
6
Preserve or destroy: Orphan protein proteostasis and the heat shock response.
J Cell Biol. 2024 Dec 2;223(12). doi: 10.1083/jcb.202407123. Epub 2024 Nov 15.
7
Redox regulation of proteostasis.
J Biol Chem. 2024 Dec;300(12):107977. doi: 10.1016/j.jbc.2024.107977. Epub 2024 Nov 8.
9
Feedback control of the heat shock response by spatiotemporal regulation of Hsp70.
J Cell Biol. 2024 Dec 2;223(12). doi: 10.1083/jcb.202401082. Epub 2024 Sep 20.

本文引用的文献

1
Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis.
Nat Cell Biol. 2023 Aug;25(8):1157-1172. doi: 10.1038/s41556-023-01180-2. Epub 2023 Jul 3.
4
Inducible transcriptional condensates drive 3D genome reorganization in the heat shock response.
Mol Cell. 2022 Nov 17;82(22):4386-4399.e7. doi: 10.1016/j.molcel.2022.10.013. Epub 2022 Nov 2.
5
Ribosome biogenesis and the cellular energy economy.
Curr Biol. 2022 Jun 20;32(12):R611-R617. doi: 10.1016/j.cub.2022.04.083.
7
Transcriptional lockdown during acute proteotoxic stress.
Trends Biochem Sci. 2022 Aug;47(8):660-672. doi: 10.1016/j.tibs.2022.03.020. Epub 2022 Apr 26.
8
Chaperones directly and efficiently disperse stress-triggered biomolecular condensates.
Mol Cell. 2022 Feb 17;82(4):741-755.e11. doi: 10.1016/j.molcel.2022.01.005. Epub 2022 Feb 10.
9
A comprehensive landscape of 60S ribosome biogenesis factors.
Cell Rep. 2022 Feb 8;38(6):110353. doi: 10.1016/j.celrep.2022.110353.
10
Reversible amyloids of pyruvate kinase couple cell metabolism and stress granule disassembly.
Nat Cell Biol. 2021 Oct;23(10):1085-1094. doi: 10.1038/s41556-021-00760-4. Epub 2021 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验