Wang Yuqi, Jiang Dianyu, Zhang Yan, Chen Jian, Xie Mingjiang, Du Cheng, Wan Liu
Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
J Colloid Interface Sci. 2024 Jan 15;654(Pt A):379-389. doi: 10.1016/j.jcis.2023.10.059. Epub 2023 Oct 14.
Herein, we report the rational fabrication of unique core-shell nanoclusters composed of cobalt carbonate hydroxide (Co-CH) @ nickel aluminum layered double hydroxide (NiAl-LDH) on a carbon cloth (CC) substrate using a two-step hydrothermal strategy. The one-dimensional (1D) Co-CH nanowires core-shell functions as a framework for the growth of two-dimensional (2D) NiAl-LDH nanosheets, leading to the formation of a hierarchically porous core-shell heterostructure. The presence of abundant heterointerfaces enhances electrical conductivity, reduces charge transfer resistance, and facilitates ion/electron transfer. Taking full advantage of its unique nanostructure and synergistic effect of two components, the as-prepared Co-CH@NiAl-LDH hybrid material illustrates a specific capacity of 1029.4 C/g (2058.9 mC cm) at 1 A g and good rate capability with a capacity retention of 68.5% at 20 A g. Additionally, the assembled Co-CH@NiAl-LDH//pine pollen-derived porous carbon (PPC) hybrid supercapacitor (HSC) delivers impressive energy and power densities of 66.2 Wh kg (0.27 Wh cm) and 17529.7 Wh kg (0.11 Wh cm), respectively. This device also achieves a superior capacity retention of 80.3% over 20,000 cycles. These findings prove the importance of engineering heterointerfaces in heterostructure for the promotion of energy storage performance.
在此,我们报道了采用两步水热法在碳布(CC)基底上合理制备由碳酸氢氧化钴(Co-CH)@镍铝层状双氢氧化物(NiAl-LDH)组成的独特核壳纳米团簇。一维(1D)Co-CH纳米线核壳作为二维(2D)NiAl-LDH纳米片生长的框架,导致形成分层多孔核壳异质结构。大量异质界面的存在提高了电导率,降低了电荷转移电阻,并促进了离子/电子转移。充分利用其独特的纳米结构和两种组分的协同效应,所制备的Co-CH@NiAl-LDH混合材料在1 A g下表现出1029.4 C/g(2058.9 mC cm)的比容量和良好的倍率性能,在20 A g下容量保持率为68.5%。此外,组装的Co-CH@NiAl-LDH//松花粉衍生的多孔碳(PPC)混合超级电容器(HSC)分别提供了令人印象深刻的66.2 Wh kg(0.27 Wh cm)和17529.7 Wh kg(0.11 Wh cm)的能量和功率密度。该器件在20000次循环中也实现了80.3%的优异容量保持率。这些发现证明了在异质结构中设计异质界面对于提升储能性能的重要性。