Suppr超能文献

用于混合超级电容器的铁钴硒化物和磷酸镍钴异质结构的两步电沉积合成

Two-step electrodeposition synthesis of iron cobalt selenide and nickel cobalt phosphate heterostructure for hybrid supercapacitors.

作者信息

Jiang Tao, Zhang Yan, Du Cheng, Xiao Ting, Wan Liu

机构信息

College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China; Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.

Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.

出版信息

J Colloid Interface Sci. 2023 Jan;629(Pt B):1049-1060. doi: 10.1016/j.jcis.2022.09.094. Epub 2022 Sep 30.

Abstract

Exploring novel heterostructure with multiscale nanoarchitectures and modulated electronic structure is crucial to improve the electrochemical properties of electrode materials for supercapacitors (SCs). In this study, a two-step electrodeposition approach which involves suitable efficient procedures, is leading to in-situ preparation of iron cobalt selenide (FeCoSe) @ nickel cobalt phosphate (NiCo(HPO)·3HO, denoted as NiCo-P) hybrid nanostructure on carbon cloth (CC) substrate. Particularly, depositing two-dimensional (2D) NiCo-P nanosheets on the surface of FeCoSe nanobelts results in formation of well-organized FeCoSe@NiCo-P nanocomposite with large surface area, hierarchical porous nanoarchitecture as well as numerous electroactive sites, leading to enhanced electroactivity and accelerated mass/electron transfer. Benefiting from its unique nanoarchitecture and synergistic effect of two components, the obtained free-standing FeCoSe@NiCo-P electrode demonstrates gravimetric capacity (C)/volumetric capacity (C) of 202.3 mAh/g/319.6 mAh cm at 1 A g and good cyclic stability (83.9% capacity retention over 5000 cycles), which are superior to those of pure FeCoSe and NiCo-P electrodes. Impressively, it was established that an aqueous hybrid supercapacitor (HSC) based on FeCoSe@NiCo-P and rape pollen derived hierarchical porous carbon (RPHPC) achieves gravimetric energy density (E)/volumetric energy density (E) of 64.4 Wh kg/10.7 mWh cm and a long cycle life with 90.3% capacity retention over 10,000 cycles. This report offers a perspective to design selenide/phosphate heterostructure on conducting substrate for electrochemical energy storage applications.

摘要

探索具有多尺度纳米结构和调制电子结构的新型异质结构对于改善超级电容器(SCs)电极材料的电化学性能至关重要。在本研究中,一种涉及合适有效程序的两步电沉积方法导致在碳布(CC)基底上原位制备铁钴硒化物(FeCoSe)@磷酸镍钴(NiCo(HPO)·3HO,记为NiCo-P)混合纳米结构。特别地,在FeCoSe纳米带表面沉积二维(2D)NiCo-P纳米片导致形成具有大表面积、分级多孔纳米结构以及众多电活性位点的组织良好的FeCoSe@NiCo-P纳米复合材料,从而增强了电活性并加速了质量/电子转移。得益于其独特的纳米结构和两种组分的协同效应,所制备的独立式FeCoSe@NiCo-P电极在1 A g时表现出202.3 mAh/g/319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验