Suppr超能文献

用于混合超级电容器的高负载量磷化钴铁@镍钒层状双氢氧化物异质纳米片阵列

High-mass-loading cobalt iron phosphide@nickel vanadium layered double hydroxide heterogeneous nanosheet arrays for hybrid supercapacitors.

作者信息

Wan Liu, Chen Jian, Zhang Yan, Du Cheng, Xie Mingjiang, Hu Shunxuan

机构信息

Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.

Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.

出版信息

J Colloid Interface Sci. 2024 Jan 15;654(Pt A):539-549. doi: 10.1016/j.jcis.2023.10.066. Epub 2023 Oct 16.

Abstract

Designing multidimensional heterostructures on flexible substrates is an efficient approach to resolve the low energy density of supercapacitors. Herein, a three-dimensional (3D) porous cobalt iron phosphide (CoFeP)@nickel vanadium-layered double hydroxide (NiV-LDH) heterostructure has been prepared anchored on carbon cloth (CC) substrate. In this nanoarchitecture, NiV-LDH nanosheets are densely wrapped on the surface of CoFeP nanosheets, which forms a hierarchically porous framework with an enlarged surface area and accessible pore channels. Benefiting from the strong interaction and synergistic effect between CoFeP and NiV-LDH, the well-defined heterostructure can realize simultaneously rich redox active sites, rapid reaction dynamics, and good structural stability. Thus, the binder-free CoFeP@NiV-LDH electrode with a high mass loading of 6.47 mg cm displays a significantly increased specific capacity of 903.1C g (2.35C cm) at 1 A g and enhanced rate capability when compared to pristine CoFeP and NiV-LDH. Additionally, the assembled hybrid supercapacitor (HSC) yields an energy density of 77.9 Wh kg/0.98 Wh cm and excellent long-term stability. This research proposes a rational route for designing heterogeneous micro-/nanoarchitectures with commercial-level mass loading for the practical application of high-energy-density supercapacitors.

摘要

在柔性基板上设计多维异质结构是解决超级电容器能量密度低问题的有效方法。在此,制备了一种三维(3D)多孔磷化钴铁(CoFeP)@镍钒层状双氢氧化物(NiV-LDH)异质结构,并将其锚定在碳布(CC)基板上。在这种纳米结构中,NiV-LDH纳米片紧密包裹在CoFeP纳米片表面,形成了具有更大表面积和可及孔道的分级多孔框架。得益于CoFeP与NiV-LDH之间的强相互作用和协同效应,这种明确的异质结构能够同时实现丰富的氧化还原活性位点、快速的反应动力学以及良好的结构稳定性。因此,具有6.47 mg cm高负载量的无粘结剂CoFeP@NiV-LDH电极在1 A g时显示出显著提高的比容量903.1 C g(2.35 C cm),并且与原始的CoFeP和NiV-LDH相比,倍率性能得到增强。此外,组装的混合超级电容器(HSC)具有77.9 Wh kg/0.98 Wh cm的能量密度以及出色的长期稳定性。这项研究为设计具有商业级负载量的异质微/纳米结构以实现高能量密度超级电容器的实际应用提出了一条合理途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验