School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, 85287, USA.
Small. 2024 Mar;20(9):e2307585. doi: 10.1002/smll.202307585. Epub 2023 Oct 17.
The combination of multiple orthogonal interactions enables hierarchical complexity in self-assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host-guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 10 m , directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower-affinity β-cyclodextrin-adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high-affinity CB[7]-adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high-affinity CB[7]-guest recognition as an orthogonal axis to drive self-assembly in DNA nanotechnology.
多种正交相互作用的结合使自组装纳米材料具有层次复杂性。在这里,通过小分子主客体相互作用的多价显示,证明了 DNA 折纸纳米结构的高效超分子聚合。通过用葫芦[7]脲(CB[7])及其金刚烷客体修饰 DNA 链,生成具有 10m 数量级亲和力的超分子复合物,指导折纸单体分级组装成 1D 纳米纤维。这种亲和力范围使聚合效率更高;低亲和力的β-环糊精-金刚烷复合物在类似价态下不会促进扩展结构。最后,利用高亲和力的 CB[7]-金刚烷相互作用,使使用肽接头组装的折纸纳米纤维能够响应酶的驱动。这项工作证明了高亲和力 CB[7]-客体识别作为驱动 DNA 纳米技术中自组装的正交轴的强大功能。