Suppr超能文献

基于机器学习的产后抑郁症预测分析

Predictive Analysis of Postpartum Depression Using Machine Learning.

作者信息

Kim Hyunkyoung

机构信息

Department of Nursing, Kongju National University, Gongju 32588, Republic of Korea.

出版信息

Healthcare (Basel). 2025 Apr 14;13(8):897. doi: 10.3390/healthcare13080897.

Abstract

Maternal postpartum depression (PPD) is a major psychological problem affecting mothers, newborns, and their families after childbirth. This study investigated the factors influencing maternal PPD and developed a predictive model using machine learning. In this study, we applied machine learning techniques to identify significant predictors of PPD and to develop a model for classifying individuals at risk. Data from 2570 subjects were analyzed using the Korean Early Childhood Education and Care Panel (K-ECEC-P) dataset as of January 2025, utilizing Python version 3.12.8. We compared the performance of a decision tree classifier, random forest classifier, AdaBoost classifier, and logistic regression model using metrics such as precision, accuracy, recall, F1-score, and area under the curve. The logistic regression model was selected as the best model. Among the 13 features analyzed, conflict with a partner, stress, and the value of children emerged as significant predictors of PPD. Conflict with a partner and stress levels emerged as the strongest predictors. Higher levels of conflict and stress were associated with an increased likelihood of PPD, whereas a higher value of children reduced this risk. Maternal psychological status and environmental features should be managed carefully during the postpartum period.

摘要

产后抑郁(PPD)是一种影响产后母亲、新生儿及其家庭的主要心理问题。本研究调查了影响产后抑郁的因素,并使用机器学习开发了一个预测模型。在本研究中,我们应用机器学习技术来识别产后抑郁的重要预测因素,并开发一个对有风险个体进行分类的模型。截至2025年1月,我们使用韩国幼儿教育与照料面板(K-ECEC-P)数据集对2570名受试者的数据进行了分析,使用的是Python 3.12.8版本。我们使用精确率、准确率、召回率、F1分数和曲线下面积等指标,比较了决策树分类器、随机森林分类器、AdaBoost分类器和逻辑回归模型的性能。逻辑回归模型被选为最佳模型。在分析的13个特征中,与伴侣的冲突、压力和对孩子的重视程度成为产后抑郁的重要预测因素。与伴侣的冲突和压力水平是最强的预测因素。更高程度的冲突和压力与产后抑郁的可能性增加有关,而对孩子更高的重视程度则降低了这种风险。在产后期间,应谨慎管理产妇的心理状态和环境特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c71/12026879/856663dbcd29/healthcare-13-00897-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验