Suppr超能文献

从大鼠单一颈动脉压力波形中即时检测急性心肌梗死和缺血

Instantaneous detection of acute myocardial infarction and ischaemia from a single carotid pressure waveform in rats.

作者信息

Alavi Rashid, Dai Wangde, Matthews Ray V, Kloner Robert A, Pahlevan Niema M

机构信息

Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Ave. Room 400, Los Angeles, CA 90089, USA.

Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Ave., Los Angeles, CA 90033, USA.

出版信息

Eur Heart J Open. 2023 Oct 3;3(5):oead099. doi: 10.1093/ehjopen/oead099. eCollection 2023 Sep.

Abstract

AIMS

Myocardial infarction (MI) is one of the leading causes of death worldwide. It is well accepted that early diagnosis followed by early reperfusion therapy significantly increases the MI survival. Diagnosis of acute MI is traditionally based on the presence of chest pain and electrocardiogram (ECG) criteria. However, around 50% of the MIs are without chest pain, and ECG is neither completely specific nor definitive. Therefore, there is an unmet need for methods that allow detection of acute MI or ischaemia without using ECG. Our hypothesis is that a hybrid physics-based machine learning (ML) method can detect the occurrence of acute MI or ischaemia from a single carotid pressure waveform.

METHODS AND RESULTS

We used a standard occlusion/reperfusion rat model. Physics-based ML classifiers were developed using intrinsic frequency parameters extracted from carotid pressure waveforms. ML models were trained, validated, and generalized using data from 32 rats. The final ML models were tested on an external stratified blind dataset from additional 13 rats. When tested on blind data, the best ML model showed specificity = 0.92 and sensitivity = 0.92 for detecting acute MI. The best model's specificity and sensitivity for ischaemia detection were 0.85 and 0.92, respectively.

CONCLUSION

We demonstrated that a hybrid physics-based ML approach can detect the occurrence of acute MI and ischaemia from carotid pressure waveform in rats. Since carotid pressure waveforms can be measured non-invasively, this proof-of-concept pre-clinical study can potentially be expanded in future studies for non-invasive detection of MI or myocardial ischaemia.

摘要

目的

心肌梗死(MI)是全球主要的死亡原因之一。人们普遍认为,早期诊断并随后进行早期再灌注治疗可显著提高心肌梗死的生存率。急性心肌梗死的诊断传统上基于胸痛的存在和心电图(ECG)标准。然而,约50%的心肌梗死患者没有胸痛症状,而且心电图既不完全特异也不具有决定性。因此,迫切需要无需使用心电图就能检测急性心肌梗死或缺血的方法。我们的假设是,一种基于物理的混合机器学习(ML)方法可以从单个颈动脉压力波形中检测急性心肌梗死或缺血的发生。

方法与结果

我们使用了标准的闭塞/再灌注大鼠模型。基于从颈动脉压力波形中提取的固有频率参数开发了基于物理的ML分类器。使用来自32只大鼠的数据对ML模型进行训练、验证和泛化。最终的ML模型在另外13只大鼠的外部分层盲数据集上进行测试。在盲数据上进行测试时,最佳ML模型检测急性心肌梗死的特异性 = 0.92,敏感性 = 0.92。最佳模型检测缺血的特异性和敏感性分别为0.85和0.92。

结论

我们证明了一种基于物理的混合ML方法可以从大鼠颈动脉压力波形中检测急性心肌梗死和缺血的发生。由于颈动脉压力波形可以无创测量,这项概念验证的临床前研究有可能在未来的研究中扩展为用于心肌梗死或心肌缺血的无创检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5fd/10578505/f18e5ac9bb75/oead099_ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验