Suppr超能文献

使用可穿戴生物传感器预测青少年强迫症发作——手腕天使可行性研究

Predicting obsessive-compulsive disorder episodes in adolescents using a wearable biosensor-A wrist angel feasibility study.

作者信息

Lønfeldt Nicole Nadine, Olesen Kristoffer Vinther, Das Sneha, Mora-Jensen Anna-Rosa Cecilie, Pagsberg Anne Katrine, Clemmensen Line Katrine Harder

机构信息

Child and Adolescent Mental Health Center, Copenhagen University Hospital-Mental Health Services Copenhagen (CPH), Hellerup, Denmark.

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs Lyngby, Denmark.

出版信息

Front Psychiatry. 2023 Oct 2;14:1231024. doi: 10.3389/fpsyt.2023.1231024. eCollection 2023.

Abstract

INTRODUCTION

Obsessive-compulsive disorders (OCD) are marked by distress, negative emotions, mental processes and behaviors that are reflected in physiological signals such as heart rate, electrodermal activity, and skin temperature. Continuous monitoring of physiological signals associated with OCD symptoms may make measures of OCD more objective and facilitate close monitoring of prodromal symptoms, treatment progress and risk of relapse. Thus, we explored the feasibility of capturing OCD events in the real world using an unobtrusive wrist worn biosensor and machine learning models.

METHODS

Nine adolescents (ages 10-17 years) with mild to moderate-severe OCD were recruited from child and adolescent mental health services. Participants were asked to wear the biosensor in the lab during conditions of rest and exposure to OCD symptom-triggering stimuli and for up to 8 weeks in their everyday lives and register OCD events. We explored the relationships among physiological data, registered OCD events, age, OCD symptom severity and symptom types. In the machine learning models, we considered detection of OCD events as a binary classification problem. A nested cross-validation strategy with either random 10-folds, leave-one-subject-out, or leave-week(s)-out in both layers was used. We compared the performance of four models: logistic regression, random forest (RF), feedforward neural networks, and mixed-effect random forest (MERF). To explore the ability of the models to detect OCD events in new patients, we assessed the performance of participant-based generalized models. To explore the ability of models to detect OCD events in future, unseen data from the same patients, we compared the performance of temporal generalized models trained on multiple patients with personalized models trained on single patients.

RESULTS

Eight of the nine participants collected biosensor signals totaling 2, 405 h and registered 1, 639 OCD events. Better performance was obtained when generalizing across time compared to across patients. Generalized temporal models trained on multiple patients were found to perform better than personalized models trained on single patients. RF and MERF models outperformed the other models in terms of accuracy in all cross-validation strategies, reaching 70% accuracy in random and participant cross-validation.

CONCLUSION

Our pilot results suggest that it is possible to detect OCD episodes in the everyday lives of adolescents using physiological signals captured with a wearable biosensor. Large scale studies are needed to train and test models capable of detecting and predicting episodes.

CLINICAL TRIAL REGISTRATION

ClinicalTrials.gov: NCT05064527, registered October 1, 2021.

摘要

引言

强迫症(OCD)的特征是痛苦、负面情绪、心理过程和行为,这些会反映在诸如心率、皮肤电活动和皮肤温度等生理信号中。持续监测与强迫症症状相关的生理信号可能会使强迫症的测量更加客观,并有助于密切监测前驱症状、治疗进展和复发风险。因此,我们探讨了使用一种不引人注意的腕戴式生物传感器和机器学习模型在现实世界中捕捉强迫症事件的可行性。

方法

从儿童和青少年心理健康服务机构招募了9名年龄在10 - 17岁之间、患有轻度至中度重度强迫症的青少年。参与者被要求在实验室休息和接触引发强迫症症状的刺激条件下佩戴生物传感器,并在日常生活中佩戴长达8周,同时记录强迫症事件。我们探讨了生理数据、记录的强迫症事件、年龄、强迫症症状严重程度和症状类型之间的关系。在机器学习模型中,我们将强迫症事件的检测视为一个二分类问题。在两层中均使用了随机10折、留一受试者法或留周法的嵌套交叉验证策略。我们比较了四种模型的性能:逻辑回归、随机森林(RF)、前馈神经网络和混合效应随机森林(MERF)。为了探索模型检测新患者中强迫症事件的能力,我们评估了基于参与者的广义模型的性能。为了探索模型检测同一患者未来未见过的数据中强迫症事件的能力,我们比较了在多个患者上训练的时间广义模型与在单个患者上训练的个性化模型的性能。

结果

9名参与者中的8名收集了总计2405小时的生物传感器信号,并记录了1639次强迫症事件。与跨患者进行泛化相比,跨时间进行泛化时获得了更好的性能。发现基于多个患者训练的广义时间模型比基于单个患者训练的个性化模型表现更好。在所有交叉验证策略中,RF和MERF模型在准确性方面优于其他模型,在随机和参与者交叉验证中达到了70%的准确率。

结论

我们的初步结果表明,使用可穿戴生物传感器捕获的生理信号来检测青少年日常生活中的强迫症发作是可能的。需要进行大规模研究来训练和测试能够检测和预测发作的模型。

临床试验注册

ClinicalTrials.gov:NCT05064527,于2021年10月1日注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdc8/10578443/17a519aa322f/fpsyt-14-1231024-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验