Zhao Rui, Zhu Ziyin, Ouyang Ting, Liu Zhao-Qing
School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China.
Angew Chem Int Ed Engl. 2024 Feb 5;63(6):e202313597. doi: 10.1002/anie.202313597. Epub 2023 Nov 6.
Electrocatalytic CO -to-syngas (gaseous mixture of CO and H ) is a promising way to curb excessive CO emission and the greenhouse gas effect. Herein, we present a bimetallic AuZn@ZnO (AuZn/ZnO) catalyst with high efficiency and durability for the electrocatalytic reduction of CO and H O, which enables a high Faradaic efficiency of 66.4 % for CO and 26.5 % for H and 3 h stability of CO -to-syngas at -0.9 V vs. the reversible hydrogen electrode (RHE). The CO/H ratios show a wide range from 0.25 to 2.50 over a narrow potential window (-0.7 V to -1.1 V vs. RHE). In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy combined with density functional theory calculations reveals that the bimetallic synergistic effect between Au and Zn sites lowers the activation energy barrier of CO molecules and facilitates electronic transfer, further highlighting the potential to control CO/H ratios for efficient syngas production using the coexisting Au sites and Zn sites.
电催化将CO转化为合成气(CO和H₂的气态混合物)是抑制过量CO排放和温室气体效应的一种很有前景的方法。在此,我们展示了一种双金属AuZn@ZnO(AuZn/ZnO)催化剂,它在电催化还原CO₂和H₂O方面具有高效率和耐久性,在相对于可逆氢电极(RHE)为-0.9 V的条件下,实现了CO的法拉第效率高达66.4%,H₂的法拉第效率为26.5%,并且CO₂到合成气具有3小时的稳定性。在较窄的电位窗口(相对于RHE为-0.7 V至-1.1 V)内,CO/H₂比率显示出从0.25到2.50的宽范围。原位衰减全反射表面增强红外吸收光谱结合密度泛函理论计算表明,Au和Zn位点之间的双金属协同效应降低了CO分子的活化能垒并促进了电子转移,进一步突出了利用共存的Au位点和Zn位点控制CO/H₂比率以高效生产合成气的潜力。