Suppr超能文献

太阳模拟驱动下由二氧化碳生产高纯度甲醇

Sun-simulated-driven production of high-purity methanol from carbon dioxide.

作者信息

Jiao Jiqing, Ma Yanbin, Han Xiaoqian, Ergu Awu, Zhang Chao, Chen Pingping, Liu Wei, Luo Qiquan, Shi Zhaolin, Xu Han, Chen Chen, Li Yaguang, Lu Tongbu

机构信息

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Analysis and Testing Center, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China.

出版信息

Nat Commun. 2025 Jan 20;16(1):857. doi: 10.1038/s41467-025-56101-8.

Abstract

CO conversion to CHOH under mild conditions is of particular interest yet rather challenging. Both electro- and thermo-catalytic CO reduction to CHOH can only produce CHOH in low concentration (typically mixed with water), requiring energy-intensive purification processes. Here we design a sun-simulated-driven tandem catalytic system comprising CO electroreduction to syngas, and further photothermal conversion into high-purity CHOH (volume fraction > 97%). We construct a self-supporting electrocatalyst featuring dual active sites of Ni single atoms and encapsulated Co nanoparticles, which could produce syngas with a constant H:CO ratio of ~2 via solar-powered CO electroreduction. The generated syngas is subsequently fed into the photothermal module, which could produce high-purity CHOH under 1 sun-light irradiation, with a rate of 0.238 g g h. This work demonstrates a feasible and sustainable route for directly converting CO into high-purity CHOH.

摘要

在温和条件下将一氧化碳转化为甲醇具有特别的吸引力,但也颇具挑战性。电催化和热催化将一氧化碳还原为甲醇都只能产生低浓度的甲醇(通常与水混合),这需要耗能巨大的纯化过程。在此,我们设计了一个太阳模拟驱动的串联催化系统,该系统包括将一氧化碳电还原为合成气,以及进一步将其光热转化为高纯度甲醇(体积分数>97%)。我们构建了一种具有镍单原子和封装钴纳米颗粒双活性位点的自支撑电催化剂,通过太阳能驱动的一氧化碳电还原,它能够产生氢气与一氧化碳比例恒定为~2的合成气。随后,所生成的合成气被送入光热模块,该模块在1个太阳光照射下能够产生高纯度甲醇,产率为0.238 g g h。这项工作展示了一条将一氧化碳直接转化为高纯度甲醇的可行且可持续的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d27c/11747295/04279c10ada9/41467_2025_56101_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验