Suppr超能文献

通过条件生成对抗神经网络实现频率感知光学相干断层扫描图像超分辨率

Frequency-aware optical coherence tomography image super-resolution via conditional generative adversarial neural network.

作者信息

Li Xueshen, Dong Zhenxing, Liu Hongshan, Kang-Mieler Jennifer J, Ling Yuye, Gan Yu

机构信息

Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.

Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, Minhang District, 200240, China.

出版信息

Biomed Opt Express. 2023 Sep 11;14(10):5148-5161. doi: 10.1364/BOE.494557. eCollection 2023 Oct 1.

Abstract

Optical coherence tomography (OCT) has stimulated a wide range of medical image-based diagnosis and treatment in fields such as cardiology and ophthalmology. Such applications can be further facilitated by deep learning-based super-resolution technology, which improves the capability of resolving morphological structures. However, existing deep learning-based method only focuses on spatial distribution and disregards frequency fidelity in image reconstruction, leading to a frequency bias. To overcome this limitation, we propose a frequency-aware super-resolution framework that integrates three critical frequency-based modules (i.e., frequency transformation, frequency skip connection, and frequency alignment) and frequency-based loss function into a conditional generative adversarial network (cGAN). We conducted a large-scale quantitative study from an existing coronary OCT dataset to demonstrate the superiority of our proposed framework over existing deep learning frameworks. In addition, we confirmed the generalizability of our framework by applying it to fish corneal images and rat retinal images, demonstrating its capability to super-resolve morphological details in eye imaging.

摘要

光学相干断层扫描(OCT)推动了心脏病学和眼科等领域基于医学图像的广泛诊断和治疗。基于深度学习的超分辨率技术可以进一步促进此类应用,该技术提高了解析形态结构的能力。然而,现有的基于深度学习的方法仅关注空间分布,而在图像重建中忽略了频率保真度,导致频率偏差。为了克服这一限制,我们提出了一种频率感知超分辨率框架,该框架将三个关键的基于频率的模块(即频率变换、频率跳跃连接和频率对齐)以及基于频率的损失函数集成到条件生成对抗网络(cGAN)中。我们从现有的冠状动脉OCT数据集中进行了大规模定量研究,以证明我们提出的框架优于现有的深度学习框架。此外,我们通过将其应用于鱼角膜图像和大鼠视网膜图像来证实我们框架的通用性,证明了其在眼部成像中超分辨率形态细节的能力。

相似文献

本文引用的文献

8
Macular Optical Coherence Tomography Imaging in Glaucoma.青光眼的黄斑光学相干断层扫描成像
J Ophthalmic Vis Res. 2021 Jul 29;16(3):478-489. doi: 10.18502/jovr.v16i3.9442. eCollection 2021 Jul-Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验