Suppr超能文献

PHINDaccess 针对 COVID-19 和宿主-病原体相互作用的黑客马拉松:从中学到的经验教训和对中低收入国家的建议。

PHINDaccess Hackathons for COVID-19 and Host-Pathogen Interaction: Lessons Learned and Recommendations for Low- and Middle-Income Countries.

机构信息

Laboratory of Bioinformatics, Biomathematics and Biostatistics LR20IPT09, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia.

Laboratory of Biomedical Genomics and Oncogenetics (LR20IPT05), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia.

出版信息

Biomed Res Int. 2023 Oct 10;2023:6638714. doi: 10.1155/2023/6638714. eCollection 2023.

Abstract

Hackathons are collaborative events that bring together diverse groups to solve predefined challenges. The COVID-19 pandemic caused by SARS-CoV-2 has emphasized the need for portable and reproducible genomics analysis pipelines to study the genetic susceptibility of the human host and investigate human-SARS-CoV-2 protein interactions. To build and strengthen institutional capacities in OMICS data analysis applied to host-pathogen interaction (HPI), the PHINDaccess project organized two hackathons in 2020 and 2021. These hackathons are aimed at developing bioinformatics pipelines related to the SARS-CoV-2 viral genome, its phylodynamic transmission, and the identification of human genome host variants, with a focus on addressing global health challenges, particularly in low- and middle-income countries (LMIC). This paper outlines the preparation, proceedings, and lessons learned from these hackathons, including the challenges faced by participants and our recommendations based on our experience for organizing hackathons in LMIC and beyond.

摘要

研讨会是一种将不同群体聚集在一起解决预定义挑战的协作活动。由 SARS-CoV-2 引起的 COVID-19 大流行强调了需要便携式和可重复的基因组学分析管道,以研究人类宿主的遗传易感性,并研究人类 - SARS-CoV-2 蛋白相互作用。为了建立和加强应用于宿主-病原体相互作用(HPI)的 OMICS 数据分析的机构能力,PHINDaccess 项目于 2020 年和 2021 年组织了两次研讨会。这些研讨会旨在开发与 SARS-CoV-2 病毒基因组、其系统发育传播以及人类基因组宿主变异体识别相关的生物信息学管道,重点是解决全球健康挑战,特别是在中低收入国家(LMIC)。本文概述了这些研讨会的筹备、进行情况和经验教训,包括参与者面临的挑战以及我们根据在 LMIC 及其他地区组织研讨会的经验提出的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b6d/10581832/d2e8d132c1f0/BMRI2023-6638714.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验