Zika Wiebke, Leng Andreas, Weiß René, Pintér Simone, Schüßlbauer Christoph M, Clark Timothy, Hirsch Andreas, Guldi Dirk M
Department of Physical Chemistry I, Friedrich-Alexander-Universität Egerlandstraße 3 91058 Erlangen Germany
Department of Organic Chemistry II, Friedrich-Alexander-Universität Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany.
Chem Sci. 2023 Sep 20;14(40):11096-11104. doi: 10.1039/d3sc03679k. eCollection 2023 Oct 18.
Through comprehensive photo-assays, this study investigates the reaction coordinate governing the interconversion between quadricyclane (QC) and norbornadiene (NBD) upon photo-irradiation up to a wavelength of 550 nm. To harness this spectroscopic range for energy release, we link the NBD-core with a highly electron-accepting perylenediimide (PDI) with broad absorption, achieving strong electronic coupling between them. We detail the successful synthesis and present extensive DFT calculations to determine the amount of stored energy. By means of transient absorption spectroscopy, an oxidative electron transfer is observed during the QC-to-NBD isomerization following the initial PDI photoexcitation. This charge-separated state is key to triggering the back-isomerization with visible light excitation.
通过全面的光化学分析,本研究探究了在高达550 nm波长的光照射下,控制四环烷(QC)和降冰片二烯(NBD)之间相互转化的反应坐标。为了利用该光谱范围实现能量释放,我们将NBD核心与具有广泛吸收的高电子接受性苝二酰亚胺(PDI)相连,实现了它们之间的强电子耦合。我们详细介绍了成功的合成方法,并进行了广泛的密度泛函理论(DFT)计算以确定存储的能量。通过瞬态吸收光谱法,在最初的PDI光激发后,观察到QC到NBD异构化过程中的氧化电子转移。这种电荷分离态是通过可见光激发触发逆向异构化的关键。