Suppr超能文献

创伤科学领域中机器学习的当前知识与可用性。

Current knowledge and availability of machine learning across the spectrum of trauma science.

作者信息

Gauss Tobias, Perkins Zane, Tjardes Thorsten

机构信息

Anesthesia and Critical Care, Grenoble Alpes, University Hospital, Grenoble, France.

Centre for Trauma Sciences, Queen Mary University of London, London, UK.

出版信息

Curr Opin Crit Care. 2023 Dec 1;29(6):713-721. doi: 10.1097/MCC.0000000000001104. Epub 2023 Oct 3.

Abstract

PURPOSE OF REVIEW

Recent technological advances have accelerated the use of Machine Learning in trauma science. This review provides an overview on the available evidence for research and patient care. The review aims to familiarize clinicians with this rapidly evolving field, offer perspectives, and identify existing and future challenges.

RECENT FINDINGS

The available evidence predominantly focuses on retrospective algorithm construction to predict outcomes. Few studies have explored actionable outcomes, workflow integration, or the impact on patient care. Machine Learning and data science have the potential to simplify data capture and enhance counterfactual causal inference research from observational data to address complex issues. However, regulatory, legal, and ethical challenges associated with the use of Machine Learning in trauma care deserve particular attention.

SUMMARY

Machine Learning holds promise for actionable decision support in trauma science, but rigorous proof-of-concept studies are urgently needed. Future research should assess workflow integration, human-machine interaction, and, most importantly, the impact on patient outcome. Machine Learning enhanced causal inference for observational data carries an enormous potential to change trauma research as complement to randomized studies. The scientific trauma community needs to engage with the existing challenges to drive progress in the field.

摘要

综述目的

近期技术进步加速了机器学习在创伤科学中的应用。本综述概述了研究和患者护理方面的现有证据。其目的是让临床医生熟悉这一快速发展的领域,提供观点,并识别当前和未来的挑战。

最新发现

现有证据主要集中在用于预测结果的回顾性算法构建上。很少有研究探讨可采取行动的结果、工作流程整合或对患者护理的影响。机器学习和数据科学有潜力简化数据收集,并加强从观察性数据进行的反事实因果推断研究,以解决复杂问题。然而,在创伤护理中使用机器学习相关的监管、法律和伦理挑战值得特别关注。

总结

机器学习有望为创伤科学提供可采取行动的决策支持,但迫切需要严格的概念验证研究。未来的研究应评估工作流程整合、人机交互,最重要的是,对患者结局的影响。机器学习增强的观察性数据因果推断作为随机研究的补充,有巨大潜力改变创伤研究。创伤科学界需要应对现有挑战,以推动该领域的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验