Suppr超能文献

机器学习与人工预测用于识别需要出血控制复苏的创伤患者的比较(休克矩阵研究):一项前瞻性观察性研究。

Comparison of machine learning and human prediction to identify trauma patients in need of hemorrhage control resuscitation (ShockMatrix study): a prospective observational study.

作者信息

Gauss Tobias, James Arthur, Colas Clelia, Delhaye Nathalie, Holleville Mathilde, Bijok Benjamin, Werner Marie, Meyer Alain, Ramonda Véronique, Cesareo Eric, de Cherisey Hugues, Medjkoune Sofiane, Salah Samia, Nadal Jean-Pierre, Moyer Jean-Denis, Vilotitch Antoine, Bouzat Pierre, Josse Julie

机构信息

Service Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France.

Université Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Grenoble, France.

出版信息

Lancet Reg Health Eur. 2025 Jun 12;55:101340. doi: 10.1016/j.lanepe.2025.101340. eCollection 2025 Aug.

Abstract

BACKGROUND

Machine learning could improve the timely identification of trauma patients in need of hemorrhage control resuscitation (HCR), but the real-life performance remains unknown. The ShockMatrix study aimed to compare the predictive performance of a machine learning algorithm with that of clinicians in identifying the need for HCR.

METHODS

Prospective, observational study in eight level-1 trauma centers. Upon receiving a prealert call, trauma clinicians in the resuscitation room entered nine predictor variables into a dedicated smartphone app and provided a subjective prediction of the need for HCR. These predictors matched those used in the machine learning model. The primary outcome, need for HCR, was defined as: transfusion in the resuscitation room, transfusion of more than four red blood cell units in 6 h of admission, any hemorrhage control procedure within 6 h, or death from hemorrhage within 24 h. The human and machine learning performances were assessed by sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and net clinical benefit. Human and machine learning agreement was assessed with Cohen's kappa coefficient.

FINDINGS

Between August 2022 and June 2024, out of 5550 potential eligible patients, 1292 were ultimately included in the analyses. The need for HCR occurred in 170/1292 patients (13%). The results showed a positive likelihood ratio of 3.74 (95% confidence interval [CI]: 3.20-4.36) and a negative likelihood ratio of 0.36 (95% CI: 0.29-0.46) for the human prediction and a positive likelihood ratio of 4.01 (95% CI: 3.43-4.70) and negative likelihood ratio of 0.35 (95% CI: 0.38-0.44) for the machine learning prediction. The combined use of human and machine learning prediction yielded a sensitivity of 83% (95% CI: 77-88%) and a specificity of 73% (95% CI: 70-75%). The Cohen's kappa coefficient showed an agreement of 0.51 (95% CI: 0.48-0.55).

INTERPRETATION

The prospective ShockMatrix temporal validation study suggests a comparable human and machine learning performance to predict the need for HCR using real-life and real-time information with a moderate level of agreement between the two. Machine learning enhanced decision awareness could potentially improve the detection of patients in need of HCR if used by clinicians.

FUNDING

The study received no funding.

摘要

背景

机器学习有助于及时识别需要进行出血控制复苏(HCR)的创伤患者,但实际应用效果尚不清楚。ShockMatrix研究旨在比较机器学习算法与临床医生在识别HCR需求方面的预测性能。

方法

在8个一级创伤中心进行前瞻性观察研究。接到预警电话后,复苏室的创伤临床医生将9个预测变量输入专用智能手机应用程序,并对HCR需求进行主观预测。这些预测变量与机器学习模型中使用的变量相匹配。主要结局,即HCR需求,定义为:在复苏室输血、入院6小时内输注超过4个红细胞单位、6小时内进行任何出血控制程序或24小时内死于出血。通过敏感性、特异性、阳性似然比、阴性似然比和净临床效益评估人类和机器学习的性能。用科恩kappa系数评估人类和机器学习的一致性。

结果

在2022年8月至2024年6月期间,5550名潜在合格患者中,最终1292名被纳入分析。1292名患者中有170名(13%)需要进行HCR。结果显示,人类预测的阳性似然比为3.74(95%置信区间[CI]:3.20-4.36),阴性似然比为0.36(95%CI:0.29-0.46);机器学习预测的阳性似然比为4.01(95%CI:3.43-4.70),阴性似然比为0.35(95%CI:0.38-0.44)。人类和机器学习预测的联合使用产生的敏感性为83%(95%CI:77-88%),特异性为73%(95%CI:70-75%)。科恩kappa系数显示一致性为0.51(95%CI:0.48-0.55)。

解读

前瞻性的ShockMatrix时间验证研究表明,人类和机器学习在使用现实生活中的实时信息预测HCR需求方面具有可比的性能,两者之间的一致性处于中等水平。如果临床医生使用,机器学习增强的决策意识可能会改善对需要HCR患者的检测。

资金

该研究未获得资金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584c/12205608/aeca02f7015c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验