Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892.
Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2303703120. doi: 10.1073/pnas.2303703120. Epub 2023 Oct 20.
The family of GalNAc-Ts (GalNAcpolypeptide:N-Acetylgalactosaminyl transferases) catalyzes the first committed step in the synthesis of O-glycans, which is an abundant and biologically important protein modification. Abnormalities in the activity of individual GalNAc-Ts can result in congenital disorders of O-glycosylation (CDG) and influence a broad array of biological functions. How site-specific O-glycans regulate biology is unclear. Compiling in vivo O-glycosites would be an invaluable step in determining the function of site-specific O-glycans. We integrated chemical and enzymatic conditions that cleave O-glycosites, a higher-energy dissociation product ions-triggered electron-transfer/higher-energy collision dissociation mass spectrometry (MS) workflow and software to study nine mouse tissues and whole blood. We identified 2,154 O-glycosites from 595 glycoproteins. The O-glycosites and glycoproteins displayed consensus motifs and shared functions as classified by Gene Ontology terms. Limited overlap of O-glycosites was observed with protein O-GlcNAcylation and phosphorylation sites. Quantitative glycoproteomics and proteomics revealed a tissue-specific regulation of O-glycosites that the differential expression of Galnt isoenzymes in tissues partly contributes to. We examined the Galnt2-null mouse model, which phenocopies congenital disorder of glycosylation involving GALNT2 and revealed a network of glycoproteins that lack GalNAc-T2-specific O-glycans. The known direct and indirect functions of these glycoproteins appear consistent with the complex metabolic phenotypes observed in the Galnt2-null animals. Through this study and interrogation of databases and the literature, we have compiled an atlas of experimentally identified mouse O-glycosites consisting of 2,925 O-glycosites from 758 glycoproteins.
GalNAc-Ts(GalNAc 多肽:N-乙酰半乳糖胺转移酶)家族催化 O-聚糖合成的第一步,这是一种丰富且具有重要生物学意义的蛋白质修饰。单个 GalNAc-Ts 活性的异常可导致先天性 O-聚糖合成障碍(CDG),并影响广泛的生物学功能。特定 O-聚糖如何调节生物学尚不清楚。编制体内 O-糖基化位点将是确定特定 O-聚糖功能的宝贵步骤。我们整合了化学和酶切条件,可裂解 O-糖基化位点,高能解离产物离子触发的电子转移/高能碰撞解离质谱(MS)工作流程和软件,用于研究 9 种小鼠组织和全血。我们从 595 种糖蛋白中鉴定出 2154 个 O-糖基化位点。O-糖基化位点和糖蛋白显示出共识基序,并根据基因本体论术语共享功能。O-糖基化位点与蛋白质 O-GlcNAc 化和磷酸化位点的重叠有限。定量糖蛋白质组学和蛋白质组学揭示了 O-糖基化位点的组织特异性调节,组织中 Galnt 同工酶的差异表达部分导致了这种调节。我们检查了 Galnt2 缺失小鼠模型,该模型模拟了涉及 GALNT2 的先天性糖基化障碍,并揭示了缺乏 GalNAc-T2 特异性 O-聚糖的糖蛋白网络。这些糖蛋白的已知直接和间接功能似乎与 Galnt2 缺失动物中观察到的复杂代谢表型一致。通过这项研究以及对数据库和文献的查询,我们编制了一份实验鉴定的小鼠 O-糖基化图谱,其中包含 758 种糖蛋白中的 2925 个 O-糖基化位点。